Problemas - Combinatoria

Problema

Problema 1 - IMO 2015 - Conjunto de puntos y mediatrices.

Enviado por jesus el 14 de Julio de 2015 - 17:26.

Decimos que un conjunto finito $\cal{S}$ de puntos en el plano es equilibrado si para cada dos puntos distintos $A$ y $B$ en $\cal{S}$ hay un punto $C$ en $\cal{S}$ tal que $AC = BC$. Decimos que $\cal{S}$ es libre de centros si para cada tres puntos distintos $A$, $B$, $C$ en $\cal{S}$ no existe ningún punto $P$ en $\cal{S}$ tal que $PA=PB=PC$.

  1. Demostrar que para todo $n \geq 3$ existe un conjunto de $n$ puntos equilibrado.
  2. Determinar todos los enteros $n \geq 3$ para los que existe un conjunto de $n$ puntos equilibrado y libre de centros.
Problema

Necesario organizar en casos

Enviado por jmd el 20 de Junio de 2015 - 12:43.

¿Cuántos números de 6 dígitos son tales que

  • los dígitos de cada número son del conjunto $\{1,2,3,4,5\}$
  • cualquier dígito que aparece  en el número aparece al menos dos veces?

Ejemplo: 222133 no es admisible 

Problema

Problema 9

Enviado por Roberto Alain R... el 11 de Junio de 2015 - 19:12.

Un polígono regular de $n$ lados es seccionado en dos partes mediante un solo corte recto. Una parte es un triángulo y la otra es un polígono de $m$ lados. ¿Cómo se relacionan $m$ y $n$ ?

Problema

Problema 4

Enviado por Roberto Alain R... el 7 de Junio de 2015 - 16:28.

Un reloj digital marca las 2 : 35. Ésta es la primera vez después de la medianoche en que los tres dígitos mostrados son números primos diferentes. ¿Cuál es la última vez antes del mediodía en que los tres dígitos en el reloj son números primos diferentes?

Problema

Problema 3

Enviado por Roberto Alain R... el 7 de Junio de 2015 - 15:44.

Verónica tiene más faldas que blusas y afirma que puede vestirse todos los días de un año normal usando un conjunto falda-blusa sin repetir. Anahí le comenta que si fuera un año bisiesto esto no podría hacerlo. Hallar el número de faldas y blusas que tiene Verónica si se sabe que tiene más de una blusa.

Problema

Partición en m parejas

Enviado por German Puga el 18 de Abril de 2015 - 20:17.

Sean m y n enteros positivos con m > 1. Anastasia particiona el conjunto de enteros $1,2,\dots,2m$ en m parejas. Luego Boris escoje un entero de cada pareja y suma los enteros escogidos. Demuestra que Anastasia puede elegir las parejas de manera que Boris no pueda hacer que su suma sea igual a n.

Problema

Fichas de dominó en un tablero de ajedrez

Enviado por German Puga el 18 de Abril de 2015 - 19:29.

Una ficha de dominó es de $2\times 1$ o de $1\times 2$ cuadrados unitarios. Determina de cuántas maneras distintas se pueden acomodar exactamente $n^2$ fichas de dominó en un tablero de ajedrez de tamaño $2n\times 2n$ de forma que cualquier cuadrado de $2\times 2$ contiene al menos dos cuadrados unitarios sin cubrir que están en la misma fila o en la misma columna.

Problema

Coloración en números del 1 al 4027

Enviado por vmp el 10 de Noviembre de 2014 - 16:58.

Cada uno de los números del 1 al 4027 se ha coloreado de verde o de rojo. Cambiar el color de un número es pasarlo a verde si era rojo, y pasarlo a rojo si era verde.
Diremos que dos enteros positivos $m$ y $n$ son cuates si alguno de los números $\frac{m}{n}$ o $\frac{n}{m}$ es un número primo. Un paso consiste en elegir dos números que sean cuates y cambiar el color de cada uno de los números.
Muestra que después de realizar algunos pasos es posible hacer que todos los números del 1 al 2014 sean verdes.

Problema

Focos distribuidos en una circunferencia (P1)

Enviado por jesus el 26 de Septiembre de 2014 - 10:20.

Se tienen 25 focos distribuidos de la siguiente manera: los primeros 24 se disponen en una circunferencia colocando un foco en cada uno de los vértices de un 24-ágono regular, y el foco restante se coloca en el centro de dicha circunferencia. Se permite aplicar cualquiera de las siguientes dos operaciones:

Problema

Relaciones combinatorias

Enviado por jmd el 3 de Septiembre de 2014 - 18:53.

Sean $r,n$ enteros no negativos tales que $r\leq{n}$.

a) Demostrar que $$\frac{n+1-2r}{n+1-r}C(n,r)$$ es un entero.

b) Demostrar que

$$ \sum_{r=0}^{\lfloor n/2\rfloor}\frac{n+1-2r}{n+1-r}C(n.r)<2^{n-2}$$ para todo $n\geq 9$.
(Nota: $\lfloor x\rfloor$ es el mayor entero menor o igual que x, y $C(n,r)$ es el número de subconjuntos de tamaño r tomados de un conjunto de tamaño n.)