Geometría

Problema

Áreas enteras de triángulos

Enviado por jmd el 15 de Agosto de 2009 - 06:59.

El área del triángulo ABC es un entero. Sobre los lados BC y AC se eligen los puintos X y Y, respectivamente. Los segmentos AX y BY se cortan en un punto P dentro del triángulo ABC. El área de BPX es 1, la de APY es 2, y la de APB es un entero. Encontrar el área del triángulo ABC.

Problema

Segmentos iguales y colinealidad

Enviado por Fernando Mtz. G. el 9 de Agosto de 2009 - 15:01.

Sea ABC un triangulo, M el punto medio de CA, P el punto donde la bisectriz desde C intersecta a AB; E y Q son los puntos donde una ceviana desde A intersecta a la bisectriz y al lado BC, respectivamnete (Q no esta en la prolongacion de BC). Demuestra que los segmentos PQ y CQ son iguales, si y solo si B, E y M son colineales.

Problema

Cuadrilátero cícliclo dentro de un cuadrilátero circunscrito

Enviado por jesus el 2 de Agosto de 2009 - 22:08.

Sea ABCD un cuadrilátero para el cuál existen cuatro puntos P, Q, R y S sobre los lados AB, BC, CD y DA respectivamente y tales que PB=BQ, QC = CR, RD = DS y  SA = AP. Demuestra que:

Problema

IMO4_2009_invertido

Enviado por jmd el 30 de Julio de 2009 - 11:12.

Sean ABC un triángulo isósceles rectángulo en A, J su incentro y AD, BE las bisectrices de los ángulos A y B, respectivamente. La altura AD es tangente al incírculo del triángulo ADC (con incentro en I) en P y al lado CA en Q. Demostrar que:

Problema

Equilátero seccionado (3G, take_home_1)

Enviado por jmd el 26 de Julio de 2009 - 16:27.

Sea ABC un triángulo equilátero y A’, B’ , C’, puntos sobre los lados BC, CA y AB, respectivamente, tales que AC/CB=BA/AC=CB/BA=2 Las intersecciones de los segmentos AA’, BB’ y CC’ determinan un triángulo interior, digamos, DEF.

Problema

Una propiedad trivial de la potencia de un punto

Enviado por jmd el 26 de Julio de 2009 - 09:05.

Sean dados tres puntos distintos O, P, Q en el plano. Demostrar que OP=OQ si y sólo si P y Q tienen la misma potencia respecto a un círculo cualquiera con centro en O.

Problema

IMO 2009 Problema 2

Enviado por Luis Brandon el 20 de Julio de 2009 - 20:11.

Sean ABC un triángulo de circuncentro O, P y Q puntos sobre AB y AC, respectivamente, y K, L, M los puntos medios de BQ, CP y PQ, respectivamente. Si el circuncírculo del triangulo KLM es tangente a PQ, demostrar que OP=OQ.

Problema

IMO 2009 Problema 4

Enviado por Luis Brandon el 20 de Julio de 2009 - 10:44.

En un triángulo ABC, donde AB=AC, los bisectrices internas de A y B cortan a los lados BCAC en D y E, respectivamente. Sea I el incentro del triángulo ADC. Supongamos que IEB=45. Encontrar todos los valores posibles de A.

Problema

Probar isósceles

Enviado por jmd el 19 de Julio de 2009 - 20:15.

En una semicircuferenica de diámetro AB se elige un punto D y se baja una perpendicular al diámetro AB cortándolo en C. En el espacio descrito por DC, CB y el arco BD se inscribe un círculo tangente a CD en L, a BC en J y al arco BD en K. Demostrar que AD=AJ.

Problema

Potencia de un punto y circunferencias ortogonales

Enviado por jmd el 18 de Julio de 2009 - 08:19.

Sean dados una circunferencia c de radio r y centro O, y dos puntos M y M' tales que OMOM=r2 (i.e., inversos uno del otro respecto a c). Demostrar que cualquier circunferencia c' que pase por M y M' es ortogonal a c.

Distribuir contenido