Geometría
Ejercicio 3.3.12
Demuestra lo siguiente sobre planos afines:
Ejercicio 3.3.6
Supon que el teorema de Desargues es válido en un cierto plano proyectivo $\mathcal{P}$. Prueba que su converso también será válido sin utilizar el Principio de Dualidad.
Ejercicio 3.3.1
Considera la tripleta $(\mathcal{P}, \mathcal{L}, \mathcal{I})$ con $\mathcal{P}=\{1,2,3, 4\}$, $\mathcal{L} = \{a, b, c, d, e, f\}$ y $\mathcal{I} = \{(1,a), (2,a), (3,b), (4,b), (1,c), (3,c), (2,d), (4,d), (1,e),(4,e),(2,f),(3,f)\}$.
- Dibuja un diagrama de esta tripleta.
- Verifica que esta tripleta satisface únicamente dos de los axiomas de plano proyectivo.
Ejercicio 3.2
Sea $\pi$ un plano proyectivo. Usa la definición 3.11(la definición de espacio proyectivo pero simplificada) para probar que:
P3'. Existe almenos tres líneas no concurrentes en $\pi$.
P4'. Exiten almenos tres líneas que pasan por cualquier punto en $\pi$.
Deduce que el principio de dualidad es válido en un plano proyectivo.
Ejercicio 3.1.7
Demuestra que para cuales quiera $S_r$ y $S_n$ espacios proyectivos, el espacio $S_r \oplus S_n $ está formado por aquellos (y sólo aquellos) puntos que se encuentran sobre un línea que une un punto de $S_r$ y uno de $S_n$
Ejercicio 3.1.5
Sean $\ell$, $m$ y $n$ tres líneas mutuamente oblicuas (i.e, no dos de ellas se intersectan) en un espacio proyectivo $S_3$ de dimensión 3. Demuestre que por cada punto de $\ell$ pasa una única línea $r$ que intersecta a $m$ y $n$.
Esas líneas son llamadas $(\ell, m, n)$-transversales. El conjunto de $\mathcal{R}$ de todas las $(\ell, m, n)$-transversales es llamado un regulus, y algunas veces es denotado por $\mathcal{R}(\ell, m, n)$. Demuestre que no hay dos $(\ell, m , n)$-transversales distintas que se intersecten.
Ejercicio 3.1.2
Dos planos en un espacio proyectivo de dimensión 4, $S_4$, se dice que son oblicuos (skew en inglés) si se intersectan en un sólo punto. Sean $\pi$, $\alpha$ y $\beta$ tres planos mutuamente oblicuos en $S_4$. Demuestra que existe un único plano de $S_4$ que intesecta a cada uno de los planos $\pi$, $\alpha$ y $\beta$ en una recta.
Ejercicio 2.1.4
- a) Dualiza el teorema de Papus.
- b) Dibuja la configuración dual.
Ejercicio 2.1.2
Sea $ABCD$ un cuadrángulo en el plano Euclideano extendido (PEE). Sea $X = AB \cap CD$, $Y= BD \cap CA$, $Z = AD\cap BC$. El triángulo $XYZ$ es llamado triángulo diagonal.
Dibuja la configuración dual (el cuadrilátero y su trilátero diagonal).
Cuerdas y concurrencia
Sean PQ, RS y TU cuerdas de una circunferencia tales que PQ=RS=TU, y éstas no se intersectan dentro de la circunferencia. UP corta a QR en A, QR corta a ST en B y ST corta a UP en C. Sean L, M y N los puntos medios de PQ, RS y TU respectivamente. Demostrar que AL, BM y CN son concurrentes.