Geometría

Problema

IX Olimpiada Norestense de Matemáticas (Problema 3)

Enviado por jmd el 3 de Octubre de 2009 - 07:34.

El incírculo del triángulo $\triangle ABC$ es tangente al lado $AB$ en el punto $P$ y al lado $ BC $ en el punto $Q$. El círculo que pasa por los puntos $A,P,Q$ corta por segunda vez a la recta $ BC $ en $ M $ y el círculo que pasa por los puntos $C,P,Q$ corta por segunda vez a la recta $ AB $ en el punto $ N $.

Problema

XXIV Olimpiada Iberoamericana de Matemáticas (problema 4)

Enviado por jmd el 23 de Septiembre de 2009 - 14:00.

Sea $ ABC $ un triángulo con $AB\neq AC$.  Sean $ I $ el incentro de $ ABC $ y $ P $ el otro punto de intersección de la bisectriz exterior del ángulo $A $ con el circuncírculo de $ ABC $. La recta $PI$ intersecta por segunda vez al circuncírculo de $ ABC $ en el punto $J $. Demostrar que los circuncírculos de los triángulos $JIB$ y $JIC$ son tangentes a $IC$ y a $IB$, respectivamente.

Problema

XXIV Olimpiada Iberoamericana de Matemáticas (problema 3)

Enviado por jmd el 22 de Septiembre de 2009 - 14:06.

Sean $C_1$ y $C_2$ dos circunferencias de centros $O_1$ y $O_2$, con el mismo radio, que se cortan en $A $ y en $ B $. Sea $P $ un punto sobre el arco $AB$ de $C_2$ que está dentro de $C_1$. La recta $AP$ corta a $C_1$ en $C $, la recta $CB$ corta a $C_2$ en $D $ y la bisectriz del $\angle CAD$ intersecta a $C_1$ en $E $ y a $C_2$ en $L $. Sea $F $ el punto simétrico a $D $ con respecto al punto medio de $PE$. Demostrar que existe un punto $X $ que satisface $\angle XFL = \angle XDC = 30^\circ$ y $CX = O_1O_2$.

Problema

¿Trazo auxiliar? OK Pero... ¿cómo lo descubres?

Enviado por jmd el 13 de Septiembre de 2009 - 09:22.

En un triángulo isósceles AOB, rectángulo en O, se eligen los puntos P,Q,S en los lados OB,OA,AB, respectivamente, y un punto R interior al triángulo, de tal manera que el cuadrilátero PQRS sea un cuadrado. Si la razón de áreas entre el cuadrado y el triángulo es 2/5, calcular la razón OP/OQ.

Problema

Cuadrilátero en un cubo

Enviado por jmd el 28 de Agosto de 2009 - 08:45.

En un cubo de arista 6 los puntos medios B,D de dos aristas opuestas, y dos vértices opuestos A,C pero no en las aristas de los puntos medios B,D,  forman un cuadrilátero ABCD. Encontrar el área de ese cuadrilátero.

Problema

Semicírculo y la descomposición en dos sumandos de un segmento.

Enviado por arbiter-117 el 17 de Agosto de 2009 - 00:18.

Sea $$BC$ el diametro de una semicirculo y sea $A$ el punto medio del semicirculo. Sea M un punto sobre el arco $AC$. Seam $P$ y $Q$ los pies de las perpendiculares desde $A$ y C a la linea $BM$, respectivamente.

Demustra que $BP=PQ+QC$

Problema

Áreas enteras de triángulos

Enviado por jmd el 15 de Agosto de 2009 - 06:59.

El área del triángulo $ ABC $ es un entero. Sobre los lados $ BC$ y $AC$ se eligen los puintos $X$ y $Y$, respectivamente. Los segmentos $AX$ y $ BY$ se cortan en un punto $P$ dentro del triángulo $ ABC $. El área de $BPX$ es 1, la de $APY$ es 2, y la de $APB$ es un entero. Encontrar el área del triángulo $ABC.$

Problema

Segmentos iguales y colinealidad

Enviado por Fernando Mtz. G. el 9 de Agosto de 2009 - 15:01.

Sea ABC un triangulo, M el punto medio de CA, P el punto donde la bisectriz desde C intersecta a AB; E y Q son los puntos donde una ceviana desde A intersecta a la bisectriz y al lado BC, respectivamnete (Q no esta en la prolongacion de BC). Demuestra que los segmentos PQ y CQ son iguales, si y solo si B, E y M son colineales.

Problema

Cuadrilátero cícliclo dentro de un cuadrilátero circunscrito

Enviado por jesus el 2 de Agosto de 2009 - 22:08.

Sea ABCD un cuadrilátero para el cuál existen cuatro puntos P, Q, R y S sobre los lados AB, BC, CD y DA respectivamente y tales que PB=BQ, QC = CR, RD = DS y  SA = AP. Demuestra que:

Problema

IMO4_2009_invertido

Enviado por jmd el 30 de Julio de 2009 - 11:12.

Sean ABC un triángulo isósceles rectángulo en A, J su incentro y AD, BE las bisectrices de los ángulos A y B, respectivamente. La altura AD es tangente al incírculo del triángulo ADC (con incentro en I) en P y al lado CA en Q. Demostrar que:

Distribuir contenido