Geometría

Problema

P5. OMM 1990. Baricentro de coordenadas enteras

Enviado por jmd el 7 de Julio de 2010 - 02:23.

Si $P_1,P_2,\ldots,P_{19}$ son diecinueve puntos del plano con coordenadas enteras tales que cada tres de ellos son no colineales, demuestre que hay tres con la propiedad de que su baricentro (punto de intersección de las medianas de un triángulo), también tiene coordenadas enteras.

Problema

P2. OMM 1990. Relación de inradios

Enviado por jmd el 7 de Julio de 2010 - 02:15.

Sea $ABC$ un triángulo rectángulo con ángulo recto en $B$, y $H$ el punto de intersección del lado $AC$ y la altura por $B$. Llamemos $r,r_1,r_2$ a los radios de las circunferencias inscritas en los triángulos $ABC,ABH,HBC$, respectivamente. Encuentre una igualdad que relacione $r,r_1,r_2$.

Problema

P5. OMM 1989. Círculos tangentes

Enviado por jmd el 6 de Julio de 2010 - 11:23.

Sean $C_1$ y $C_2$ dos círculos tangentes de radio 1 dentro de un círculo $C$ de radio 2. Sea $C_3$ un círculo dentro de $C$ tangente a cada uno de los círculos $C,C_1,C_2$. Sea $C_4$ un círculo dentro de $C$ tangente a $C,C_1,C_3$. Demuestre que los centros de $C,C_1,C_3,C_4$ son los vértices de un rectángulo.

Problema

P1. OMM 1989. Áreas y medianas

Enviado por jmd el 6 de Julio de 2010 - 11:09.

Considere un triángulo $ABC$ en el que la longitud del lado $AB$ es 5, las medianas por $A$ y por $B$ son perpendiculares entre sí y el área es 18. Hallar las longitudes de los lados $BC$ y $AC$.

Problema

P8. OMM 1988. Esfera en octaedro

Enviado por jmd el 5 de Julio de 2010 - 19:20.

Calcule el volumen del octaedro que circunscribe a una esfera de radio 1.
 

Problema

P3. OMM 1988. Área de triángulo de tangentes comunes

Enviado por jmd el 5 de Julio de 2010 - 19:05.

Considere dos circunferencias tangentes exteriormente y de radios distintos; sus tangentes comunes forman un triángulo. Calcule el área de dicho triángulo en términos de los radios de las circunferencias.
 

Problema

P8. OMM 1987. El último de la primera nacional (de geometría tridimensional)

Enviado por jesus el 5 de Julio de 2010 - 11:41.
  1. Tres rectas en el espacio l, m, n concurren en el punto S y un plano perpendicular a m corta a l, m, n en A, B y C respectivamente. Suponga que los ángulos ASB y BSC son de 45° y que el ángulo ABC es recto. Calcule el ángulo ASC.
  2. Si un plano perpendicular a l corta a l, m, n en P, Q y R respectivamente y si SP = 1, calcule los lados del triángulo PQR.
Problema

P5. OMM 1987. Triángulo rectángulo y tres área iguales imposibles

Enviado por jesus el 3 de Julio de 2010 - 19:48.

Considere un triángulo rectángulo ABC donde la hipotenusa es BC. M un punto en BC; P y Q las proyecciones de M en AB y BC, respectivamente. Pruebe que, para ninguno de tales puntos M, son iguales las áreas de  BPM, MQC y AQMP (las tres al mismo tiempo).

Problema

P3. OMM 1987. Lugar geométrico de la proyección de un punto

Enviado por jesus el 3 de Julio de 2010 - 14:49.

Considere dos rectas $\ell$ y $\ell'$ y un punto fijo P que diste lo mismo de $\ell$, que de $\ell'$. ¿Qué lugar geométrico describen los puntos M que son proyección de P sobre AB, donde A está en $\ell$, B está en $\ell'$, y el ángulo APB es recto.

Problema

Circunferencias inscritas en ángulo e isósceles

Enviado por jmd el 1 de Julio de 2010 - 20:32.

Dos circunferencias están inscritas entre los lados de un triángulo isósceles $ABC$ (con $AB=AC$) y los de un ángulo, uno de los cuales pasa por A y el otro incluye la base $BC$ del isósceles. Encontrar la relación entre la altura de $A$ respecto a la base $BC$ y los radios de las circunferencias.

Distribuir contenido