Problemas - Teoría de números
Problema 5 OMM 2003
Problema 5. Se escriben en tarjetas todas las parejas de enteros $(a,b)$ con $1\leq a\leq b \leq 2003$. Dos personas juegan con las tarjetas como sigue: cada jugador en su turno elige $(a,b)$ (que se retira del juego) y escribe el producto ab en el pizarrón (ambos jugadores usan el mismo pizarrón). Pierde el jugador que ocasione que el máximo común divisor de los números escritos hasta ese momento sea $1$. ¿Quién tiene la estrategia ganadora? (Es decir, ¿cuál de los dos jugadores puede inventar un método que asegure su tirunfo?)
Cálculo inteligente
¿Cuál es el resultado de la siguiente operación?
$(12, 345, 678)^2 - (12, 345, 677) \times (12, 345, 679)$
Problema 1 OMM 2003
Problema 1. Dado un número $k$ de dos o más cifras, se forma otro
entero $m$ insertando un cero entre las cifras de las unidades y
de las decenas de $k$. Encuentra todos los números $k$ para los
cuales $m$ resulta ser un múltiplo de $k$.
Problema 3
¿Cuántos números comprendidos entre 2008 y 8002 son multiplos de 3?
Problema 2
¿Cuántos divisores tiene el número 120?
Problema 1
¿Cuál es el mayor número que al dividirlo entre 28 el cociente es igual al resto?
Problema 1 de la OMM 2008
Sean $1=d_1 < d_2 < d_3 \cdots < d_k = n$ los divisores del entero positivo $ n $. Encuentra todos los números $ n $ tales que $n = d_2 ^ 2 + d_3^3$.
El multiplo de 2000 más pequeño que es suma de los primeros cuadrados
Encuentra el número entero $ n > 0 $ más pequeño que satisface que 2000 divide a
$$ 1^2 + 2^2 + \cdots + n^2 $$.
El abuelo y la niña generalizado
Kika tiene $ n $ objetos. Un día llega de la escuela y… ¡Abuelo! ¡Abuelo! Perdí $ x $. Y el abuelo la consuela: piensa en que si hubieses encontrado $ x $, ahora tendrías $ y $ veces los que ahora tienes. Encontrar todas las parejas $(x, n)$ en términos de $ y $, para que el diálogo entre la niña y el abuelo tenga sentido en enteros positivos ($x, y, n$ enteros positivos).
(El problema original dice: perdí 2. Y el abuelo dice: si hubieses encontrado 2 ahora tendrías 5 veces los que ahora tienes.)
En sucesión modular busca el ciclo
Considere la sucesión $1, 9, 8, 3, 4, 3, \ldots$ en la cual $a_{n+4}$ es el dígito de la unidades de $a_n + a_{n+3},$ para $ n $ entero positivo. Demuestre que $a_{1985}^2 +a_{1986}^2+ \ldots + a_{2000}^2$ es un múltiplo de $ 2 $.