Publicaciones Recientes
¿Cómo se prueba paralelismo?
Combinatoria en el campamento
En un campamento de verano que va a durar n semanas se quiere dividir el tiempo en $3$ períodos de manera que cada período empiece en un lunes y termine un domingo. El primer período se dedicará a labores artísticas, el segundo será para deportes y en el tercero se hará un taller tecnológico. Durante cada período se escogerá un lunes para que un experto en el tema del período dé una plática. Sea $C(n)$ el número de formas en que puede hacerse el calendario de actividades.
¿Es el aprendizaje del álgebra un problema resoluble con tecnología?
La computadora, se ha dicho, es una solución en busca de problemas. Y en la enseñanza de las matemáticas se postuló, desde la aparición de esa herramienta maravillosa, que la PC (y, antes de ella, las calculadoras) podría ser la solución a las dificultades que los estudiantes enfrentan al aprender esa "ciencia incomprensible" (la etiqueta es espuria, pero de aceptación universal) denominada álgebra .
¿Cómo se demuestra perpendicularidad?
En los lados $CA$ y $AB$ del triángulo equilátero $ABC$, se eligen respectivamente los puntos $D$ y $E$, de tal manera que $2BE=EA$ y $2AD=DC$. Si P es el punto de intersección de $CE$ y $BD$, demostrar que $AP$ es perpendicular a $CE$.
Triángulo conocido
Dos lados de un triángulo forman un ángulo de 60 grados, y uno mide el doble que el otro. ¿Cuánto miden los otros dos ángulos? Justifica tu respuesta.
Función de un primo con 6 divisores
Encontrar todos los números primos $p$ para los cuales el número $p^2+11$ tiene exactamente 6 divisores positivos (el 1 y el número incluidos).
Soluciones enteras bajo condición de divisibilidad
Encontrar, con prueba, todas las parejas $(a,b)$ de enteros positivos tales que $ab^2+b+7$ divide a $a^2b+a+b$
Puntos en la base de un isósceles
En la base $BC$ del isósceles $ABC$ (con $AB=AC$) se eligen los puntos $M,N$ en el orden $B,M,N,C$. Demostrar que, si existe un punto $P$ tal que $MP=BM, PN=NC$ y $\angle{MPN}=2\angle{CBA}$ entonces $2\angle{MAN}+\angle{MPN}=180$
Puntos en la hipotenusa de un isósceles rectángulo
En la hipotenusa $BC$ del triángulo isósceles rectángulo $ABC$ se han elegido los puntos $M,N$ en el orden $B,M,N,C$, de tal manera que $BM^2+NC^2=MN^2$. Encontrar, con prueba, la medida del ángulo $\angle{MAN}$
Selección norestense, Tamaulipas 2010
Los 15 adolescentes de la siguiente lista constituyen la Selección Tamaulipas que participará en la X Olimpiada Norestense de Matemáticas a celebrarse los días 7, 8 y 9 de octubre en la Universidad Autónoma de Nuevo León. Se añaden las puntuaciones de los tres selectivos realizados los días 15, 22 y 29 de agosto de 2010, en el aula A2 de la Unidad Académica Multidisciplinaria de Ciencias, Educación y Humanidades de la Universidad Autónoma de Tamaulipas (UAMCEH-UAT). Entrenador: José Luis del Angel Medellín. (Información proporcionada por el Delegado Ramón Jardiel Llanos Portales.)
SELECCIÓN NORESTENSE