Publicaciones Recientes

Problema

Teorema de Pitágoras

Enviado por jmd el 1 de Enero de 2008 - 00:00.

Un triángulo de lados $a, b, c$, con $c > a, b$ es triángulo rectángulo sí y sólo si $c^2 = a^2 + b^2$.

Problema

Triángulo rectángulo -enunciado

Enviado por jmd el 1 de Enero de 2008 - 00:00.

Considere un triángulo rectángulo con longitudes a, b y c, la hipotenusa es de longitud c, sea r la longitud del radio de la circunferencia inscrita en el triángulo. Demuestre que r es igual a la mitad de a+b-c.

Problema

QUINTO EXAMEN SELECTIVO

Enviado por jmd el 1 de Enero de 2008 - 00:00.

Problema 1 Dado un triángulo acutángulo ABC se trazan las circunferencias c1 de diámetro AB y c2 de diámetro BC y se ubican las intersecciones M y N y P y Q de las alturas CC’ y BB’ (vistas como rectas) con c1 y c2, respectivamente. Demostrar que los puntos M, N, P y Q pertenecen a una misma circunferencia.

Problema

Método "Busca donde hay luz"

Enviado por jmd el 1 de Enero de 2008 - 00:00.

Encontrar todas las tripletas de enteros (a,b,c) tales que el producto de dos de ellos más el tercero sea la unidad (o sea el 1).

Problema

Ecuaciones funcionales

Enviado por jmd el 1 de Enero de 2008 - 00:00.

Resolver las siguientes ecuaciones funcionales.

 

 

  1. Encontrar $p(x)$ de tal manera que $p(x+1)=p(x)+2x+1$.
  2. Encontrar $f(x)$ de tal manera que $f(x+1)=x^2-3x+2$.
  3. Lo mismo para $$ f(\frac{x+1}{x})=(\frac{x^2+1}{x^2})+1/x $$
  4. $f(x+y)=f(x)+f(y)+f(x)f(y)$.
  5. Para $x>0$, $f(xy)=xf(y)+yf(x)$.
  6. $f(x+1)+f(x-1)=2x^2-4x$.
Problema

Fórmulas de Vieta

Enviado por jmd el 1 de Enero de 2008 - 00:00.

Encontrar todas las soluciones del siguiente sistema de tres ecuaciones en tres incógnitas.

x+y+z=2

x^2+y^2+z^2=14

xyz=-6

Problema

IMO 2004, problema 2

Enviado por jesus el 1 de Enero de 2008 - 00:00.

Encuentre todos los polinomios $P(x)$ tales que

$$P(a-b)+P(b-c)+P(c-a)=2P(a+b+c)$$

para todo $a, b, c$ reales que satisfacen que $ab+bc+ca=0$.

Problema

Soluciones de una cuadrática

Enviado por jesus el 1 de Enero de 2008 - 00:00.

Sean $x_1$ y $x_2$ dos soluciones distintas de la ecuación cuadrática:

$Ax^2+Bx+C=0$

Demuestra que $$ (x_1-x_2)^2 = \frac{(B/2)^2 -AC}{A^2} $$

Problema

2n-agono

Enviado por jmd el 1 de Enero de 2008 - 00:00.

Demostrar que para cada n natural mayor que 1, cualquier 2n-ágono convexo tiene una diagonal que no es paralela a ningún lado.

Problema

Cinco Enteros

Enviado por jmd el 1 de Enero de 2008 - 00:00.

En cualquier conjunto de cinco enteros siempre hay tres cuya suma es múltiplo de 3.

Distribuir contenido