Publicaciones Recientes
Resultados XXXVIII OMM
Hola. Les escribo desde mi casa, pero ahora mi casa de CDMX. A partir de este año, como algunos ya sabrán, a los nacionales que vaya iré como codelegado (aunque este fui de visitante XD). No pude estar presente toda la semana por motivos escolares, pero ahí anduve.
Tenemos noticias buenas y malas. La mala, y la única, es que Tamaulipas quedó en lugar 26. Igualmente nadie debe sentirse mal por ese resultado, este año tuvimos a puros nuevos. El único que repetía era Edu y apenas es su segundo año en la olimpiada en general.
P6. La lista de Germán
Sea n un entero positivo. Germán tiene una lista de n números enteros. Si suma todos sus números, obtiene 6. Si los multiplica, también obtiene 6. Encuentra todos los posibles valores para n.
P5. Dos circunferencias, una perpendicular.
Sea ABC un triángulo acutángulo y ω su circuncírculo. Sea Γ un círculo con centro A de forma que corta al arco AB que no contiene a C de ω en un punto D y al arco AC que no contiene a B de ω en un punto E. Sea K la intersección de BE con CD de tal forma que K esté sobre Γ. Demuestra que AK es perpendicular a BC.
P4. Ceros y Unos en un pizarrón.
- ¿Para qué valores de n te puede quedar un número par?
- ¿Para qué valores de n te puede quedar un número impar?
P3. Desigualdades en un selectivo
Sean a,b,c números reales positivos tales que abc=18. Demuestra que: a2+b2+c2+a2b2+a2c2+b2c2≥1516
P2. Los monos de Daniel
Daniel tiene 1600 plátanos y 100 monos. Él va a repartir sus plátanos entre sus 100 monos (pero no de forma justa, algunos tendrán más plátanos que otros, incluso habrá monos que no reciban ningún plátano). Demuestra que al menos 4 monos tendrán la misma cantidad de plátanos.
P1. Repaso de la cantidad de divisores de un número.
3.- Los delegados de Tamaulipas jugando una modificación de ajedrez
Considera un tablero de ajedrez de 8×8. Orlando y Moisés juegan alternando turnos, comenzando por Orlando. Cada uno en su turno coloca un alfil en alguna casilla del tablero vacía, de tal forma que los alfiles no se ataquen entre sí. Pierde el jugador que coloque un alfil que sea atacado por otro previamente. Si los alfiles son del mismo color (es decir, o tienen puros alfiles blancos o puros alfiles negros), determina quién tiene una estrategia ganadora y descríbela.
Nota: un jugador puede atacarse a sí mismo.
2.- Ecuación de ternas en progresión Geométrica
Determina todas las ternas de números naturales (a,b,c) con 0<a<b<c en progresión geométrica para las cuales se cumplen las siguientes dos ecuaciones:
a+b+c=35
a2+b2+c2=525
1.- Aprovecha el radio con isósceles.
Sea ABC un triángulo tal que ABC=60° y sea O su circuncentro de tal forma que CBO=45°. La recta BO corta al segmento AC en D. Demuestra que el triángulo AOD es isósceles y encuentra la medida de sus ángulos.
