Publicaciones Recientes
Trisección de un segmento y triángulos equilateros
Sea $ ABC $ un triángulo equilatero, $ M $ el punto medio de $ BC $. Considera $ P $ y $ Q $ los dos puntos fuera del triángulo $ ABC $ tales que los triángulos $ BMP $ y $ MQC $ son equilateros. Llamemos $ S $ y $ T $ a los puntos de intersección de $ AP $ y $ AQ $ con el segmento $ BC $ respectivamente. Demuestra que $ S $ y $ T $ trisectan al segmento $ BC $.
Un ejercicio clásico de potencias
En la siguiente figura, desde un vértice del cuadrado está trazada una tangente. El lado del cuadrado mide 1 y la longitud de la tangente es 2. Encuentra el radio de la circunferencia.
Cómo rellenar un rectángulo con fichas
Para cada par de números naturales $a,b>1$ definamos $P_{a \times b}$ como el polígono que se forma a partir de un rectángulo de $a \times b$ removiendo dos cuadrados de $1 \times 1$ en dos esquinas opuestas . Demuestra que $P_{a \times b}$ se puede cubrir con rectángulitos de $1 \times 2$ sin que se traslapen si y sólo si $ a $ y $ b $ tienen distinta paridad.
Problema de suma con raices
Demuestra la siguiente igualdad
$$ \frac{1}{\sqrt{1} + \sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \cdots + \frac{1}{\sqrt{2007}+\sqrt{2008}} = 2\sqrt{502}-1 $$
¡Vámonos Recio!... a San Carlos...
Olimpiada Mexicana de
Matemáticas
Delegación Tamaulipas
El abuelo y la niña generalizado
Kika tiene $ n $ objetos. Un día llega de la escuela y… ¡Abuelo! ¡Abuelo! Perdí $ x $. Y el abuelo la consuela: piensa en que si hubieses encontrado $ x $, ahora tendrías $ y $ veces los que ahora tienes. Encontrar todas las parejas $(x, n)$ en términos de $ y $, para que el diálogo entre la niña y el abuelo tenga sentido en enteros positivos ($x, y, n$ enteros positivos).
(El problema original dice: perdí 2. Y el abuelo dice: si hubieses encontrado 2 ahora tendrías 5 veces los que ahora tienes.)
El abuelo y la niña
Construir un cuadrado con tres puntos dados
Se tienen dados, un vértice V de un cuadrado y dos puntos A y B. Los puntos A y B se encuentran sobre dos lados (o prolongaciones de los lados) del cuadrado antes mencionado. Estos dos lados son precisamente los opuestos al vértice V, es decir, los que no lo contienen.
Usando regla y compás, construye el cuadrado.
— Problema sugerido por Hugo Espinosa Pérez 10/Oct/2008 15:07
Reporte norestense
En resumen, Tamaulipas quedó segundo. Quien haya seguido el desempeño de la preselección Tamaulipas de la XXII OMM tiene el suficiente contexto para decidir si ese segundo lugar debe celebrarse o bien lamentarse.
En sucesión modular busca el ciclo
Considere la sucesión $1, 9, 8, 3, 4, 3, \ldots$ en la cual $a_{n+4}$ es el dígito de la unidades de $a_n + a_{n+3},$ para $ n $ entero positivo. Demuestre que $a_{1985}^2 +a_{1986}^2+ \ldots + a_{2000}^2$ es un múltiplo de $ 2 $.