Publicaciones Recientes
Triángulo rectángulo
El área de un triángulo rectángulo es 150 unidades, y la altura perpendicular a la hipotenusa mide 12. Calcular la longitud de sus lados.
Ficciones matemáticas
Demostrar que un cuadrilátero es paralelogramo (Problema 5, OIM)
En un triángulo acutángulo ABC sean AE y BF dos alturas, y sea H el ortocentro. La recta simétrica de AE respecto de la bisectriz (interior) del ángulo en A y la recta simétrica de BF respecto de la bisectriz (interior) del ángulo en B se intersecan en un punto O. Las rectas AE y AO cortan por segunda vez a la circunferencia circunscrita al triángulo ABC en los puntos M y N, respectivamente.
Sean: P, la intersección de BC con HN; R, la intersección de BC con OM; y S, la intersección de HR con OP.
Demostrar que AHSO es un paralelogramo.
Tres circunferencias con un punto común. (Problema 2, OIM)
Con centro en el incentro I, de un triángulo ABC se traza una circunferencia que corta en dos puntos a cada uno de los tres lados del triángulo: al segmento BC en D y P (siendo D el más cercano a B); al segmento CA en E y Q (siendo E el más cercano a C), y al segmento AB en F y R (siendo F el más cercano a A).
Sea S el punto de intersección de las diagonales del cuadrilátero EQFR. Sea T el punto de intersección de las diagonales del cuadrilátero FRDP. Sea U el punto de intersección de las diagonales del cuadrilátero DPEQ.
Caracterización de enteros con parte entera (Problema 1, OIM)
Sea $r \geq 1$ un número real que cumple la siguiente propiedad:
Para cada pareja de números enteros positivos $m$ y $n$, con $n$ múltiplo de $m$, se tiene que $\lfloor nr \rfloor$ es múltiplo de $\lfloor mr \rfloor$.
Probar que $r$ es un numero entero.
Nota: Si $x$ es un numero real, denotamos por $\lfloor x \rfloor$ el mayor entero menor o igual que $x$.
Coloraciones de puntos en una cuadrícula (Problema 3, OIM)
Sean $n \geq 2$ un número entero y $D_n$ el conjunto de puntos $(x,y)$ del plano cuyas coordenadas son números enteros con $-n \leq x \leq n $ y $-n \leq y \leq n$
Sucesión de cuadrados
Demostrar que todos los números de la siguiente sucesión son cuadrados perfectos: 49, 4489,444889,...
Construcción de las tangentes a un círculo que pasan por un punto dado
Esta construcción es algo complicada para ser creada por los alumnos pero es fácil de realizar. La explicación de por qué funciona requiere conocimientos de cuadriláteros cíclicos.
En la siguiente escena interactiva usa los botones ">>" y "<<" para ver paso a paso cómo se construyen las rectas tangentes a una circunferencia (de centro $O$) y que pasan por un punto dado (denotado con $A$).
Concurso de Problemas para las Olimpiadas de Matemáticas
Ya salió la convocatoria para el concurso de problemas de la Olimpiada Mexicana de Matemáticas.
Esta es la información que nos llegó.
Un problema de cálculo
Dada la función $f(x)=1/x$, considere un punto $P$ en la gráfica de la función (en el primer cuadrante). La tangente en $P$ forma un triángulo rectángulo con los ejes al intersecarlos. Calcular las coordenadas de $P$, para las cuales la hipotenusa de ese triángulo tiene longitud mínima/máxima.