Problemas - Álgebra

Problema

Capacidad del estadio de futbol

Enviado por jesus el 28 de Mayo de 2016 - 18:27.

Al inicio de un partido de futbol, al estadio estaba al 30% de capacidad, 30 minutos después había 3000 aficionados más que al inicio y al estadio le faltaba un 30% para llenarse, ¿cuál es la capacidad del estadio?

Problema

Ni primo ni cuadrado

Enviado por German Puga el 28 de Abril de 2016 - 21:34.

Muestra que el número $5n+3$ no es un cuadrado perfecto, con n entero positivo y que si $2n+1$ y $3n+1$ son ambos cuadrados, entonces $5n+3$ no es primo.

Problema

Elemental de álgebra

Enviado por German Puga el 28 de Abril de 2016 - 21:25.

Si $a^2 + a = 2b^2 + b = 50a - 49b$ ¿Cuanto es a+b?

Problema

La magia de los números primos

Enviado por German Puga el 27 de Abril de 2016 - 18:50.

Sean $a,b,c,d$ enteros positivos que satisfacen $ ab = cd$ . Muestra que $a+b+c+d$ no es un número primo.

Problema

Problema 6. 29a Olimpiada Mexicana de Matemáticas

Enviado por vmp el 25 de Noviembre de 2015 - 12:57.
Sea $n$ un entero positivo y sean $d_1,d_2, \ldots , d_k$ todos sus divisores positivos ordenados de menor a mayor. Considera el número $$f(n)=(-1)^{d_1}d_1+(-1)^{d_2}d_2+\ldots+(-1)^{d_k}d_k.$$
Por ejemplo, los divisores positivos de 10 son $1,2,5$ y $10$, así que $$f(10)=(-1)^{1}\cdot 1+(-1)^{2}\cdot 2+ (-1)^{5}\cdot 5 +(-1)^{10}\cdot 10=6.$$
Supón que $f(n)$ es una potencia de $2$. Muestra que si $m$ es un entero mayor que $1$, entonces $m^2$ no divide a $n$.
 
Problema

Problema 3. 29a Olimpiada Mexicana de Matemáticas

Enviado por vmp el 24 de Noviembre de 2015 - 11:23.
Sea $\mathbb{N}=\{1, 2, 3, \ldots \}$ el conjunto de los números enteros positivos. Sea $f:\mathbb{N} \rightarrow \mathbb{N}$ una función, la cual asigna a cada número entero positivo, un número entero positivo. Supón que $f$ satisface las siguientes condiciones:
  1. $f(1)=1$
  2. Para todos $a,b$ enteros positivos, se cumple que
    $$f(a+b+ab)=a+b+f(ab)$$
  3. .
Encuenta el valor de $f(2015)$
Problema

Problema 1(A)

Enviado por Roberto Alain R... el 29 de Agosto de 2015 - 19:19.

Calcula el valor de n que cumpla la siguiente ecuación: $$\frac{1+3+5+...+2n-1}{2+4+6+...+2n} = \frac{2014}{2015}$$

Problema

funciones

Enviado por elmopolaza el 27 de Julio de 2015 - 12:00.

Una empresa se encuentra desarrollando el presupuesto para sus proximos 5 años para dichos efectos la entidad sabe con base en su experiencia que los precios de ventas estan intimamente relacionados con el comportamiento de inflacion en Mexico, tambien se conoce que el precio de venta del año anterior es de $100 por unidad y la inflacion esperada para el año siguiente es de 3.8% y que crecera a su vez un 5% cada año  y que los volumenes de ventas se espera que permanezcan constantes en un millon de unidades.

Determine el funcion a utiliar

Cuales son las variables utilizadas y sus tipos

Respresente la ecuacion y de el resultdo

Año    Ingresos

2015

2016

2017

2018

Problema

Problema 10

Enviado por Roberto Alain R... el 11 de Junio de 2015 - 19:48.

En tierras muy lejanas había una mujer que tenía 9 hijos y los tuvo en intervalos regulares de 15 meses. El mayor de ellos tenía 6 veces la edad del menor. ¿Cuál era la edad del menor?

Problema

Problema 8

Enviado por Roberto Alain R... el 9 de Junio de 2015 - 00:22.

En una sucesión de 6 números, cada término después del segundo es la suma de los dos anteriores. Sabiendo que los 6 suman 13 y que el último término es cuatro veces el primero, calcula el primer término