Problemas - Combinatoria

Problema

Pichoneras de nacionalidad, edad y sexo

Enviado por jmd el 19 de Diciembre de 2011 - 20:27.

En una reunión hay 201 personas de 5 nacionalidades diferentes. Se sabe que, en cada grupo de 6, al menos dos tienen la misma edad. Demostrar que hay al menos 5 personas del mismo país, de la misma edad y del mismo sexo.

Problema

Coloreo de triángulos con fichas

Enviado por jmd el 10 de Diciembre de 2011 - 20:17.

Tres fichas $A, B, C$ están situadas una en cada vértice de un triángulo equilátero de lado $n$. Se ha dividido el triángulo en triangulitos equiláteros de lado 1, tal como muestra la figura en el caso $n = 3$.

Inicialmente todas las líneas de la figura están pintadas de azul. Las fichas se desplazan por las líneas, pintando de rojo su trayectoria, de acuerdo con las dos reglas siguientes:

Problema

Método para distribuir ceros y unos en un tablero

Enviado por jmd el 10 de Diciembre de 2011 - 20:13.

Tenemos un tablero cuadriculado de $k^2 - k + 1$ filas y $k^2 - k + 1$ columnas, donde $k = p + 1$ y $p$ es un número primo. Para cada primo $p$, dé un método para distribuir números entre 0 y 1, un número en cada casilla del tablero, de modo que en cada fila haya exactamente $k$ números $0$ en cada columna haya exactamente $k$ números $0$ y además no haya ningún rectángulo de lados paralelos a los lados del tablero con números 0 en sus cuatro vértices.

 

Problema

Cubo formado por 1996 cubos

Enviado por jmd el 10 de Diciembre de 2011 - 20:09.

Sea $n$ un número natural. Un cubo de arista $n$ puede ser dividido en $1996$ cubos cuyas aristas son también números naturales. Determine el menor valor posible de $n$.

Problema

Dominio eficiente de un tablero

Enviado por jmd el 10 de Diciembre de 2011 - 14:36.

En un tablero de $m\times m$ casillas se colocan fichas. Cada ficha colocada en el tablero "domina" todas las casillas de la fila (--), la columna (|) y la diagonal (\), a la que pertenece. Determine el menor número de fichas que deben colocarse para que queden "dominadas" todas las casillas del tablero. Nota: la ficha no "domina" la diagonal (/).

Problema

Tablero lampareado

Enviado por jmd el 10 de Diciembre de 2011 - 13:14.

En cada casilla de un tablero $n\times n$ hay una lámpara. Al ser tocada una lámpara, cambian de estado ella misma y todas las lámparas situadas en la fila y la columna que ella determina (las que están encendidas se apagan y las apagadas se encienden). Inicialmente todas están apagadas. Demostrar que siempre es posible, con una sucesión adecuada de toques, lograr que todo el tablero quede encendido y encontrar, en función de $n$, el número mínimo de toques para que se enciendan todas las lámparas.

Problema

Combinatoria con números de 3 cifras distintas elegidas de entre 5

Enviado por jmd el 9 de Diciembre de 2011 - 21:34.

Encontrar un número $N$ de cinco cifras diferentes y no nulas, que sea igual a la suma de todos los números de tres cifras distintas que se pueden formar con las cinco cifras de $N$.

Problema

Sumas de 14 más menos unos

Enviado por jmd el 9 de Diciembre de 2011 - 21:29.

A cada vértice de un cubo se asigna el valor de +1 o -1, y a cada cara el producto de los valores asignados a cada vértice. ¿Qué valores puede tomar la suma de los 14 números así obtenidos?

Problema

Recorridos en un tablero

Enviado por jmd el 9 de Diciembre de 2011 - 18:03.

Sean $A$ y $B$ vértices opuestos de un tablero cuadriculado de $n$ por $n$ casillas ($n\geq 1$), a cada una de las cuales se añade su diagonal de dirección $AB$, formándose así $2n^2$ triángulos iguales. Se mueve una ficha recorriendo un camino que va desde $A$ hasta $B$ formado por segmentos del tablero, y se coloca, cada vez que se recorre, una semilla en cada uno de los triángulos que admite ese segmento como lado.

Problema

IMO 2007 (PROBLEMA 6)

Enviado por cuauhtemoc el 1 de Diciembre de 2011 - 17:14.

Sea un entero positivo.  Se considera