Geometría

Problema

Ubicación del ortocentro con una sola altura

Enviado por jmd el 29 de Junio de 2008 - 17:12.

Sean AB cuerda de una circunferencia y P un punto en AB tal que AP=2PB. Sea DE la cuerda perpendicular a AB que pasa por P. Demostrar que el punto medio Q de AP es el ortocentro del triángulo ADE.

Problema

Solución de una cuadrática (Problema 3, regiones 2008)

Enviado por jmd el 9 de Junio de 2008 - 19:15.

Sea dado un segmento AB de longitud b. Por B se levanta una perpendicular a AB, y sobre ella se fija un punto O tal que BO=a/2. Se traza a continuación la circunferencia de centro O y radio a/2. La recta AO corta en P y Q a la circunferencia (P más cerca de A que Q). Si llamamos x a la longitud de AP, explicar por qué y cómo esta construcción resuelve la ecuación cuadrática $x^2+ax=b^2$. (Nota: de hecho sólo obtiene la raíz positiva de la ecuación, si es que existe.)

Problema

ONMAS 2008 Nivel 1, Problema 6

Enviado por jesus el 9 de Junio de 2008 - 00:52.

En el triángulo ABC se traza la bisectriz interior CD. Se sabe que el centro del círculo inscrito en el triángulo BCD coincide con el centro del círculo circunscrito del triángulo ABC. Calcular los ángulos del triángulo ABC.

Problema

ONMAS 2008, Nivel 1, Problema 2

Enviado por jesus el 9 de Junio de 2008 - 00:48.

Sean G una circunferencia de centro O y G’ una circunferencia que pasa por O. Sean A y B los puntos en que G interseca a G’ y escojamos un punto C en G’ distinto de A y B. Tracemos las líneas AC y BC y llamemos D y E a los puntos donde estas líneas cortan a G, respectivamente. Demuestra que AE es paralela a DB.

Problema

Longitud Mínima

Enviado por jesus el 29 de Enero de 2008 - 15:23.

Sea ABC un triángulo y P un punto que se mueve sobre la recta que contiene al lado BC. Consideremos M y N los pies de las perpendiculares trazadas desde P sobre los lado AB y AC respectivamente. Encuentra el punto P para el cual MN tiene longitud mínima.

Problema

Longitud mínima - caso particular

Enviado por jmd el 7 de Enero de 2008 - 01:00.

Sean $ABC$ un triángulo rectángulo en $ A $, y $ P $ un punto móvil en la hipotenusa $ BC $.

Problema

El Tesoro Pirata

Enviado por jmd el 1 de Enero de 2008 - 01:00.

En el mapa está un roble, un pino y un mezquite. Las instrucciones son: camina desde el mezquite hacia el pino, gira a la izquierda en ángulo recto, camina la misma distancia que hay del mezquite al pino, y clava ahí una estaca X; después regresa al mezquite, camina hacia el roble, gira a la derecha en ángulo recto, camina la misma distancia que hay entre el roble y el mezquite, y clava ahí una estaca Y. El tesoro está enterrado en el punto medio del segmento XY. ¿Qué hacer si el mezquite ha desaparecido?

 

Problema

Teorema de Pitágoras

Enviado por jmd el 1 de Enero de 2008 - 01:00.

Un triángulo de lados $a, b, c$, con $c > a, b$ es triángulo rectángulo sí y sólo si $c^2 = a^2 + b^2$.

Problema

QUINTO EXAMEN SELECTIVO

Enviado por jmd el 1 de Enero de 2008 - 01:00.

Problema 1 Dado un triángulo acutángulo ABC se trazan las circunferencias c1 de diámetro AB y c2 de diámetro BC y se ubican las intersecciones M y N y P y Q de las alturas CC’ y BB’ (vistas como rectas) con c1 y c2, respectivamente. Demostrar que los puntos M, N, P y Q pertenecen a una misma circunferencia.

Problema

Tesoro Pirata Disfrazado

Enviado por jmd el 1 de Enero de 2008 - 01:00.

El problema del tesoro pirata puede ser planteado de la siguiente manera. Sean dados los triángulos MPX y MRY, ambos isósceles y rectángulos en P y R respectivamente. Demostrar que la mediatriz del segmento PR pasa por el punto medio de XY.

Distribuir contenido