Geometría
Para trabajar semejanza
Geometría analítica, un legado cartesiano
Sean $A, B, C, D$ cuatro puntos distintos sobre una recta, en ese orden. Los círculos de diámetros $AC$ y $BD$ se intersectan en los puntos $X$ y $Y$. La recta $XY$ corta a $BC$ en el punto $Z$. Sea $P$ un punto sobre la recta $XY$, y diferente de $Z$. La recta $CP$ intersecta al círculo de diámetro $AC$ en los puntos $C$ y $M$, y la recta $BP$ intersecta el círculo de diámetro $BD$ en los puntos $B$ y $N$. Demostrar que las rectas $AM$, $DN$ y $XY$ son concurrentes.
Diferencia de cuadrados constante
Dados dos puntos A y B, determinar el lugar geométrico de los puntos P en el plano tal que:
$PA^2 - PB^2 = constante$
Simediana, línea media y pies de alturas
Consideremos un triángulo cualquiera ABC. Llamemos P y Q los pies de las alturas trazadas desde B y C respectivamente. Consideremos también $\mathcal{M} $ la línea media opuesta al vértice C; y consideremos $\mathcal{L}$ la simediana trazada desde B. Demuestra que las líneas PQ, $\mathcal{M}$ y $\mathcal{L}$ concurren.
Problema 2 de la OMM 2008
Considera una circunferencia $\Gamma$, un punto A fuera de $ \Gamma $ y las tangentes AB, AC a $ \Gamma $ desde A, con B y C los puntos de tangencia. Sea P un punto sobre el segmento AB, distinto de A y de B. Considera el punto Q sobre el segmento AC tal que PQ es tangente a $ \Gamma$, y a los puntos R y S que están sobre las rectas AB y AC, respectivamente, de manera que RS es paralela a PQ y tangente a $\Gamma$. Muestra que el producto de las áreas de los triángulos APQ y ARS no depende de la elección del punto P.
Muestra que el producto de las áreas de los triángulos APQ y ARS no depende de la elección del punto P.
Trisección de un segmento y triángulos equilateros
Sea $ ABC $ un triángulo equilatero, $ M $ el punto medio de $ BC $. Considera $ P $ y $ Q $ los dos puntos fuera del triángulo $ ABC $ tales que los triángulos $ BMP $ y $ MQC $ son equilateros. Llamemos $ S $ y $ T $ a los puntos de intersección de $ AP $ y $ AQ $ con el segmento $ BC $ respectivamente. Demuestra que $ S $ y $ T $ trisectan al segmento $ BC $.
Un ejercicio clásico de potencias
En la siguiente figura, desde un vértice del cuadrado está trazada una tangente. El lado del cuadrado mide 1 y la longitud de la tangente es 2. Encuentra el radio de la circunferencia.
Construir un cuadrado con tres puntos dados
Se tienen dados, un vértice V de un cuadrado y dos puntos A y B. Los puntos A y B se encuentran sobre dos lados (o prolongaciones de los lados) del cuadrado antes mencionado. Estos dos lados son precisamente los opuestos al vértice V, es decir, los que no lo contienen.
Usando regla y compás, construye el cuadrado.
— Problema sugerido por Hugo Espinosa Pérez 10/Oct/2008 15:07
Un problema de igualdad de areas
Sean $ABCD$ un paralelogramo, $ E $ un punto sobre la recta $AB$, mas allá de $ B $, $ F $ un punto sobre la recta $AD$, mas allá de $ D $, y $ K $ el punto de intersección de las rectas $ED$ y $BF$. Demuestre que los cuadriláteros $ABKD$ y $CEKF$ tienen la misma área.
Linea media bisectriz y cuerda
La cuerda del incírculo del triángulo ABC, definida por los puntos de tangencia P y Q en los lados b y c respectivamente, concurre con la línea media de los lados a y b y la bisectriz del ángulo B.