Problemas - Teoría de números

Problema

El número de Belmaris

Enviado por Samuel Elias el 23 de Octubre de 2022 - 16:50.

André, Belmaris, Claudia, Daniel, Elmer y Germán van a jugar a decir números en ese orden. André y Belmaris podrán elegir sus números, pero los siguientes deben decir el resultado de la multiplicación de los números que dijeron las dos personas antes que ellos, sin equivocarse. Si André dijo "2" y Germán dijo "6 075 000" (seis millones setenta y cinco mil), ¿qué numero dijo Belmaris?

Problema

Práctica de módulos

Enviado por vmp el 25 de Julio de 2022 - 08:40.
Prueba que no existe entero $n$ tal que la suma de los dígitos de $n^2$ es $2022$
Problema

Problema técnico de primos

Enviado por Samuel Elias el 11 de Julio de 2022 - 15:27.

Encuentra la suma de los números primos que dividen a todos los números de 3 dígitos con todos ellos iguales.

Problema

Piezas rectangulares con área 240

Enviado por Samuel Elias el 10 de Julio de 2022 - 20:02.

Se van a construir piezas rectangulares de área 240 cmy con ambos lados entero. ¿De cuántas formas distintas se puede hacer?

Problema

Subconjuntos con promedio entero

Enviado por German Puga el 30 de Diciembre de 2021 - 20:59.
Un conjunto de $n$ números enteros positivos distintos es $\textit{equilibrado}$, si el promedio de cualesquiera $k$ números del conjunto es un número entero, para toda $1 \leq k \leq n$. Encuentra la mayor suma que pueden tener los elementos de un conjunto equilibrado, con todos sus elementos menores o iguales que 2017.
Problema

Números digitales (OMM 2021 P5)

Enviado por jesus el 17 de Diciembre de 2021 - 23:35.

Para cada entero $n>0$ con expansión decimal $\overline{a_1a_2 \dots a_k}$ definimos $s(n)$ como sigue:

  • Si k es par, $s(n) = \overline{a_1a_2} + \overline{a_3a_4} + \dots +\overline{a_{k-1}a_k} $
  • Si k es impar, $s(n) = a_1 + \overline{a_2a_3} + \overline{a_4a_5} + \dots +\overline{a_{k-1}a_k} $

Por ejemplo, si $n=123$ entonces $s(n) = 1 + 23 = 24$ y si $n=2021$ entonces $s(n) = 20+21 = 41$.

Decimos que este $n$ es digital si $n$ es múltiplo de $s(n)$. Muestra que entre cualesquiera 198 enteros positivos consecutivos, todos ellos menores que 2000021, hay uno de ellos que es digital.

Problema

Criterio del 99 (P5 OMM 2021)

Enviado por German Puga el 7 de Diciembre de 2021 - 20:24.
Para cada entero positivo $n>0$ con expansión decimal $\over{a_1a_2\dots a_k}$ definimos $s(n)$ como sigue. Si $k$ es par, $s(n)= \overline{a_1a_2} + \overline{a_3a_4}+\cdots+ \overline{a_{k-1}a_k}$. Si $k$ es impar, $s(n)=a_1+ \overline{a_2a_3} +\cdots+ \overline{a_{k-1}a_k}$. Por ejemplo si $n=123$ entonces $s(n)=1+23=24$ y si $n=2021$ entonces $s(n)=20+21=41$. Decimos que $n$ es dígital si $n$ es múltiplo de $s(n)$. Muestra que entre cualesquiera 198 enteros positivos consecutivos , todos ellos menores que 2000021, hay uno de ellos que es dígital.
Problema

El seis de la ORO. (Paisanos)

Enviado por German Puga el 8 de Diciembre de 2017 - 23:45.

Un cambio para un número natural $n$ consiste en agregar una pareja de ceros entre dos dígitos o al final de la representación decimal de $n$. Un paisano de $n$ es un número que se puede obtener haciendo uno o más cambios en $n$. Por ejemplo 40041 y 44001 son paisanos de 441. (Nota: 441 no es paisano de 44100). Determina todos los números naturales $n$ para los cuales existe un número natural $m$ con la propiedad de que $n$ divide a $m$ y a todos los paisanos de $m$. 

Problema

Múltiplo de 7 con dígitos consecutivos

Enviado por German Puga el 13 de Diciembre de 2016 - 16:29.

Decimos que un número entero no-negativo $n$ contiene a otro número entero no-negativo $m$, si los dígitos de su expansión (o desarrollo) decimal aparecen en forma consecutiva en la expansión (o desarrollo) decimal de $n$.  Por ejemplo 2016 contiene a 2,0,1,6, 20, 16, 201 y 2016. Determina el mayor número entero $n$ que no contiene a ningún múltiplo de 7. 

Problema

Parejas Guerreras

Enviado por German Puga el 11 de Diciembre de 2016 - 20:57.

Una pareja de enteros positivos $m,n$ es guerrera si existen enteros positivos $a,b,c,d$ con $m=ab, n=cd$ y $a+b=c+d$. Por ejemplo, la pareja 8,9 es guerrera pues $8 = 4 \cdot 2 , 9=3 \cdot 3$ y $4+2=3+3$. Se colorean los enteros positivos de la siguiente manera: 

  • Empezamos coloreando el 3 y el 5.
  • Después , si algún entero positivo no está coloreado y este tiene una pareja guerrera que ya está coloreado, entonces lo coloreamos. 

Encuentra todos los enteros positivos que eventualmente se colorean.