Números

Problema

Cambio de dígitos

Enviado por Fernando Mtz. G. el 26 de Julio de 2009 - 22:18.

Sean $a$ y $b$ enteros positivos de 8 dígitos cada uno, tales que al quitar cualquier dígito de $a$ (pero solo uno) y colocar el correspondiente en posición con $b$, se cumple que el número formado es divisible entre 7 (en cualquiera de los 8 posibles cambios). Demuestra que $b$ es divisible entre 7.
   

Problema

Problema 5(N)

Enviado por jmd el 21 de Julio de 2009 - 11:00.

El alumno menos aventajado del salón canceló el 6 en 16/64 y obtuvo 1/4 --la respuesta correcta. Encontrar todos los pares de números de dos cifras ab, bc tales que ab/bc=a/c --con a,b,c dígitos diferentes. (Es decir, todos los casos en que este alumno podría acertar con su método al simplificar quebrados de dos cifras.)

Problema

IMO 2009 Problema 1

Enviado por Luis Brandon el 21 de Julio de 2009 - 10:42.

Sea $ n $ un entero positivo y sean $a_1,a_2,...,a_k (k\geq 2)$ enteros distintos del conjunto $ {1,...,n} $, tales que $ n $ divide a $a_i(a_{i+1}-1)$, para $i=1,..., k-1$. Demostrar que $ n $ no divide a $a_k(a_1-1)$.

Problema

PROBLEM 1 DE LA CENTRO

Enviado por arbiter-117 el 6 de Julio de 2009 - 22:25.

Determine el menor entero positivo $ N $  tal que la suma de sus dígitos sea 100 y la suma de $2N$ sea 110

Problema

L1.P23 (Un clásico --para terminar la lista)

Enviado por jmd el 2 de Julio de 2009 - 11:45.

Encontrar todas las soluciones en enteros positivos de la ecuación $1/x+1/y+1/z=1.$

Problema

L1.P20 (2009 como suma de impares)

Enviado por jmd el 2 de Julio de 2009 - 11:14.

El número 2009 se puede expresar como suma de $ n $ enteros impares consecutivos ($n\geq 2$) en varias formas. ¿Cuál es el menor valor posible de $ n $?

Problema

L1.P18 (Producto de 3 dígitos)

Enviado por jmd el 2 de Julio de 2009 - 10:59.

¿Cuántos números $abc$ de tres dígitos  son tales que al multiplicar los dígitos se obtiene un producto mayor que 60 pero menor que 65?

Problema

L1.P12 (Uno del 2009)

Enviado por jmd el 2 de Julio de 2009 - 10:28.

Encontrar el residuo en la división de $a+b+c$ entre $b$, donde $a,b,c$ son primos y cumplen la ecuación $2009=a^b(c).$
 

Problema

L1.P9 (Dimes y quarters)

Enviado por jmd el 2 de Julio de 2009 - 09:30.

Ana fue a McAllen el fin de semana con sus papás. Éstos le regalaron dimes (10 centavos) y quarters (25 centavos). Si los dimes fuesen quarters y los quarters fueran dimes Ana tendría un dollar y 5 centavos (de dollar) menos de lo que ahora tiene.

Problema

L1.P8 (Generalización del L1.P7)

Enviado por jmd el 2 de Julio de 2009 - 09:23.

Demostrar que si $ k,n$ son enteros positivos sin divisores en común ($k,n$ primos relativos), entonces el máximo entero positivo que no se puede expresar como suma de múltiplos de $k$ y $n$ es $kn-k-n.$

Distribuir contenido