Números

Problema

Problema 5 OMM 2003

Enviado por jose el 30 de Enero de 2009 - 22:11.

Problema 5. Se escriben en tarjetas todas las parejas de enteros $(a,b)$ con $1\leq a\leq b \leq 2003$. Dos personas juegan con las tarjetas como sigue: cada jugador en su turno elige $(a,b)$ (que se retira del juego) y escribe el producto ab en el pizarrón (ambos jugadores usan el mismo pizarrón). Pierde el jugador que ocasione que el máximo común divisor de los números escritos hasta ese momento sea $1$. ¿Quién tiene la estrategia ganadora? (Es decir, ¿cuál de los dos jugadores puede inventar un método que asegure su tirunfo?)

Problema

Cálculo inteligente

Enviado por jesus el 30 de Enero de 2009 - 21:41.

¿Cuál es el resultado de la siguiente operación?

$(12, 345, 678)^2 - (12, 345, 677) \times (12, 345, 679)$

 

 

Problema

Problema 1 OMM 2003

Enviado por jose el 29 de Enero de 2009 - 21:00.

Problema 1. Dado un número $k$ de dos o más cifras, se forma otro
entero $m$ insertando un cero entre las cifras de las unidades y
de las decenas de $k$. Encuentra todos los números $k$ para los
cuales $m$ resulta ser un múltiplo de $k$.

Problema

Problema 3

Enviado por sadhi el 18 de Enero de 2009 - 11:42.

¿Cuántos números comprendidos entre 2008 y 8002 son multiplos de 3?

Problema

Problema 2

Enviado por sadhi el 18 de Enero de 2009 - 11:34.

¿Cuántos divisores tiene el número 120?

Problema

Problema 1

Enviado por sadhi el 18 de Enero de 2009 - 11:32.

¿Cuál es el mayor número que al dividirlo entre 28 el cociente es igual al resto?

Problema

Problema 1 de la OMM 2008

Enviado por jesus el 17 de Noviembre de 2008 - 14:21.

Sean $1=d_1 < d_2 < d_3 \cdots < d_k = n$ los divisores del entero positivo $ n $. Encuentra todos los números $ n $ tales que $n = d_2 ^ 2 + d_3^3$.

Problema

El multiplo de 2000 más pequeño que es suma de los primeros cuadrados

Enviado por jesus el 18 de Octubre de 2008 - 20:18.

Encuentra el número entero $ n > 0 $ más pequeño que satisface que 2000 divide a

$$ 1^2 + 2^2 + \cdots + n^2 $$.

Problema

El abuelo y la niña generalizado

Enviado por jmd el 13 de Octubre de 2008 - 12:59.

 Kika tiene $ n $ objetos. Un día llega de la escuela y… ¡Abuelo! ¡Abuelo! Perdí $ x $. Y el abuelo la consuela: piensa en que si hubieses encontrado $ x $, ahora tendrías $ y $ veces los que ahora tienes. Encontrar todas las parejas $(x, n)$ en términos de $ y $, para que el diálogo entre la niña y el abuelo tenga sentido en enteros positivos ($x, y, n$ enteros positivos).

(El problema original dice: perdí 2. Y el abuelo dice: si hubieses encontrado 2 ahora tendrías 5 veces los que ahora tienes.)

Problema

En sucesión modular busca el ciclo

Enviado por jmd el 5 de Octubre de 2008 - 06:34.

Considere la sucesión $1, 9, 8, 3, 4, 3, \ldots$ en la cual $a_{n+4}$ es el dígito de la unidades de $a_n + a_{n+3},$ para $ n $ entero positivo. Demuestre que $a_{1985}^2 +a_{1986}^2+ \ldots + a_{2000}^2$ es un múltiplo de $ 2 $.

Distribuir contenido