Publicaciones Recientes

Problema

EGMO 2012 Problema 3 - Relación funcional en los reales

Enviado por jesus el 11 de Mayo de 2012 - 20:17.

Entontrar todas las funciones $f: \mathbb{R} \to \mathbb{R}$ tales que: $$f(yf(x+y)+f(x)) = 4x + 2yf(x+y)$$ para todo $x, y \in \mathbb{R}$.

©Traducido de la versión en ingles para Matetam.com

Entrada de blog

El misterioso hechizo del problem solving

Enviado por jmd el 9 de Mayo de 2012 - 20:16.

En días pasados subí a MaTeTaM todos los problemas de la ONMAS que pude encontrar, y hubo uno que ya había publicado en 2010 y que llamó mi atención pues se ve bastante difícil... y más difícil es la solución que envió Brandon en su momento (basada en una semejanza). 

Bueno, lo difícil es entender la demostración que da de la semejanza --yo no le entendí. El caso es que lo traje en al cabeza varios días, lo resolví de otra manera (por ortocentro) y generé un problema parecido... pero no podía demostrar la semejanza (que parecía obvia en la figura) de una manera alternativa a la que dio Brandon.

Problema

Perímetro de hexágono --con dos equiláteros superpuestos

Enviado por jmd el 8 de Mayo de 2012 - 09:45.

 

Dos triángulos equiláteros $ABC$ y $DEF$ de perímetros 36 y 27 centímetros, respectivamente, están sobrepuestos, formando un ángulo de 120 grados como se muestra en la figura. Calcula el perímetro del hexágono sombreado.

 

Problema

División sucesiva entre 14 de 2012!

Enviado por jmd el 8 de Mayo de 2012 - 09:42.

 

Rosy efectúa la multiplicación $1\times2\times3\times\ldots\times2012$, luego divide el producto entre 14, y continúa dividiendo --cada uno de los cocientes obtenidos-- entre 14. ¿Cuál es el mínimo número de divisiones que tendrá que hacer Rosy para que el cociente de la división ya no sea un número entero?

 

Problema

Demostrar punto medio --si un ángulo es el triple de otro

Enviado por jmd el 8 de Mayo de 2012 - 07:55.

 

Sean $W_1$ y $W_2$ dos circunferencias de centros $O_1$ y $O_2$, respectivamente, que se intersectan en los puntos $A$ y $B$. El punto $C$ está sobre $W_1$ y es diametralmente opuesto a $B$. Las rectas $CB$ y $CA$ cortan de nuevo a $W_2$ en los puntos $P$ y $Q$, respectivamente, donde el punto $B$ está entre $C$ y $Q$. Las rectas $O_1A$ y $PQ$ se intersectan en el punto $R$. Si la medida del ángulo $PBQ$ es el triple que la del ángulo $PCQ$, demuestra que $AO_1=AR$

Problema

Plantas vs Zombies

Enviado por jmd el 8 de Mayo de 2012 - 07:54.

 

En la versión 20.12 del juego Plantas vs Zombies, el campo de batalla es un jardín que se divide en 45 casillas, como se muestra en el dibujo. En esta versión del juego debes colocar en cada casilla una planta o un zombie y ganas si neutralizas el jardín. Para ello debe haber en cualquier cuadro de $2\times2$ casillas dos plantas y dos zombies. Encuentra el número de acomodos posibles que te permita ganar el juego.

Problema

Colocación de fichas en el borde de un tablero

Enviado por jmd el 8 de Mayo de 2012 - 07:52.

 

Luis tiene un tablero cudriculado con la misma cantidad de filas que de columnas. Las casillas del contorno del tablero están coloreadas de gris. También tiene suficientes fichas numeradas (1,2,3,...) que coloca en las casillas grises de la siguiente manera:

La ficha 1 la pone en la casilla izquierda y, a partir de ahí, el resto las coloca una en cada casilla, consecutivamente de menor a mayor en sentido de las manecillas del reloj. Una vez que llega a la posición inicial sigue colocando fichas sobre las que ya están puestas. Deja de poner fichas cuando observa que los números que están a la vista en las casillas de las esquinas del tablero suman 2012.

Problema

Problemas del segundo dia del nacional 12 ONMAS

Enviado por cuauhtemoc el 7 de Mayo de 2012 - 10:57.

Problema

Números Paceños

Enviado por jmd el 5 de Mayo de 2012 - 20:24.

 

Se dice que un número es Paceño si al escribir sus dígitos en orden inverso se obtiene un número mayor que él. Por ejemplo, el 3426 es Paceño porque 6243 es mayor que 3426, mientras que el 774 no es Paceño porque 477 no es mayor que 774. ¿Cuántos números de cinco dígitos son Paceños?

Problema

Diferencia de áreas de flores en octágono

Enviado por jmd el 5 de Mayo de 2012 - 20:23.

A partir de un octágono regular de lado 10 cm, Anita dibuja dos flores como se muestran a continuación:

¿Cuál es la diferencia entre las áreas de las flores?

Distribuir contenido