Números
P1 OMM 2001. Múltiplos de 3 y 7 con dígitos 3 o 7
Encuentra todos los números de 7 dígitos que son múltiplos de 3 y de 7,
y cada uno de cuyos dígitos es 3 o 7.
P2 OMM 1999. Primos en sucesión aritmética
Demuestre que no existen 1999 primos en progresión aritmética, todos ellos menores que 12345. (Nota: Una colección de números está en progresión aritmética si es de la forma $a, a+r, a+2r,\ldots, a+br.$)
P1 OMM 1997. Primo función de un primo
Encuentre todos los números primos positivos $p$ tales que $8p^4 - 3003$ también es un primo positivo.
P4 OMM 1996. Ocho distintos múltiplos de n
¿Para qué enteros $n \geq 2$ se pueden acomodar los números del 1 al 16 en los cuadros de una cuadrícula de $4×4$ (un número en cada cuadro, sin repetir números) de tal manera que las 8 sumas de los números que quedan en cada fila y en cada columna sean múltiplos de $n$, y que estos 8 múltiplos sean todos distintos entre sí?
P6. OMM 1993. El siguiente del producto de 4 consecutivos
Sea $f(x) = x(x+1)(x+2)(x+3)+1$ y $p$ un número primo impar. Pruebe
que existe un entero $ n $ tal que $p$ divide a $f(n)$ si y sólo si existe un entero
$m$ tal que $p$ divide a $m^2 - 5$.
P4 OMM 1992. Suma de potencias múltiplo de 100
Muestre que $100$ divide a la suma de potencias $$1+11^{11}+111^{111}+\ldots+1111111111^{1111111111}$$
P2 OMM 1992. Cuartetas y múltiplos de un primo
Sea $p$ un número primo, diga cuántas cuartetas distintas $(a, b, c, d)$ existen, con a, b, c y d enteros y $0 \leq a, b, c, d \leq p-1$, tales que $ad - bc$ sea múltiplo de $p$.
P2 OMM 1991. Soldados capicúas
Una compañía de $ n $ soldados es tal que:
- $ n $ es un número capicúa (se lee igual al derecho y al revés, como 15651, 9436349).
- Si los soldados se forman:
--de 3 en 3, quedan 2 soldados en la última fila;
--de 4 en 4, quedan 3 soldados en la última fila;
--de 5 en 5, quedan 5 soldados en la última fila.
a) Hallar el menor $n$ que cumple las condiciones.
b)Demostrar que hay una infinidad de valores $ n $ que las satisfacen.
P2. OMM 1989. Múltiplos encadenados
Encuentre dos números enteros $a$ y $b$ tales que:
- $b^2$ es múltiplo de $a$;
- $a^3$ es múltiplo de $b^2$;
- $b^4$ es múltiplo de $a^3$;
- $a^5$ es múltiplo de $b^4$;
- pero $b^6$ no es múltiplo de $a^5$.
P5. OMM 1988. Manipulación algebraica con el MCD
Si $a$ y $b$ son dos enteros positivos primos relativos y $ n $ es un entero, pruebe que el máximo común divisor de $a^2+b^2-nab$ y $a+b$ divide a $n+2$