Números

Problema

P1 OMM 2001. Múltiplos de 3 y 7 con dígitos 3 o 7

Enviado por jmd el 13 de Julio de 2010 - 21:50.

Encuentra todos los números de 7 dígitos que son múltiplos de 3 y de 7,
y cada uno de cuyos dígitos es 3 o 7.

Problema

P2 OMM 1999. Primos en sucesión aritmética

Enviado por jmd el 13 de Julio de 2010 - 19:04.

Demuestre que no existen 1999 primos en progresión aritmética, todos ellos menores que 12345. (Nota: Una colección de números está en progresión aritmética si es de la forma $a, a+r, a+2r,\ldots, a+br.$)

Problema

P1 OMM 1997. Primo función de un primo

Enviado por jmd el 11 de Julio de 2010 - 10:24.

Encuentre todos los números primos positivos $p$ tales que $8p^4 - 3003$ también es un primo positivo.

Problema

P4 OMM 1996. Ocho distintos múltiplos de n

Enviado por jmd el 11 de Julio de 2010 - 09:32.

¿Para qué enteros $n \geq 2$ se pueden acomodar los números del 1 al 16 en los cuadros de una cuadrícula de $4×4$ (un número en cada cuadro, sin repetir números) de tal manera que las 8 sumas de los números que quedan en cada fila y en cada columna sean múltiplos de $n$, y que estos 8 múltiplos sean todos distintos entre sí?
 

Problema

P6. OMM 1993. El siguiente del producto de 4 consecutivos

Enviado por jmd el 9 de Julio de 2010 - 16:09.

Sea $f(x) = x(x+1)(x+2)(x+3)+1$ y $p$ un número primo impar. Pruebe
que existe un entero $ n $ tal que $p$ divide a $f(n)$ si y sólo si existe un entero
$m$ tal que $p$ divide a $m^2 - 5$.

Problema

P4 OMM 1992. Suma de potencias múltiplo de 100

Enviado por jmd el 9 de Julio de 2010 - 10:00.

Muestre que $100$ divide a la suma de potencias $$1+11^{11}+111^{111}+\ldots+1111111111^{1111111111}$$

Problema

P2 OMM 1992. Cuartetas y múltiplos de un primo

Enviado por jmd el 9 de Julio de 2010 - 09:47.

Sea $p$ un número primo, diga cuántas cuartetas distintas $(a, b, c, d)$ existen, con a, b, c y d enteros y $0 \leq a, b, c, d \leq p-1$, tales que $ad - bc$ sea múltiplo de $p$.

Problema

P2 OMM 1991. Soldados capicúas

Enviado por jmd el 9 de Julio de 2010 - 09:13.

Una compañía de $ n $ soldados es tal que:

  • $ n $ es un número capicúa (se lee igual al derecho y al revés, como 15651, 9436349).
  • Si los soldados se forman:

--de 3 en 3, quedan 2 soldados en la última fila;
--de 4 en 4, quedan 3 soldados en la última fila;
--de 5 en 5, quedan 5 soldados en la última fila.

a) Hallar el menor $n$ que cumple las condiciones.

b)Demostrar que hay una infinidad de valores $ n $ que las satisfacen.

Problema

P2. OMM 1989. Múltiplos encadenados

Enviado por jmd el 6 de Julio de 2010 - 11:13.

Encuentre dos números enteros $a$ y $b$ tales que:

  • $b^2$ es múltiplo de $a$;
  • $a^3$ es múltiplo de $b^2$;
  • $b^4$ es múltiplo de $a^3$;
  • $a^5$ es múltiplo de $b^4$;
  • pero $b^6$ no es múltiplo de $a^5$.
Problema

P5. OMM 1988. Manipulación algebraica con el MCD

Enviado por jmd el 5 de Julio de 2010 - 19:12.

Si $a$ y $b$ son dos enteros positivos primos relativos y $ n $ es un entero, pruebe que el máximo común divisor de $a^2+b^2-nab$ y $a+b$ divide a $n+2$

Distribuir contenido