Avanzado
Una forma complicada de definir una función elemental
Sea $N^* = \{1, 2, 3, \ldots \}$. Halle todas las funciones $f: N^* \mapsto N^*$ tales que:
- i) si $x < y$, entonces $f(x) < f(y)$
- ii) $f(y f(x)) = x^2f(xy)$, para todos los $x, y\in N^*$.
Construcción de un trapecio inscrito
Se dan la circunferencia $\Gamma$ y los números positivos $h, m$ de modo que existe un trapecio $ABCD$, inscrito en $\Gamma$, de altura $h$ y tal que la suma de sus bases $AB$ y $CD$ es $m$. Construir el trapecio $ABCD$.
Dos sucesiones recursivas
Sean $(a_n)$ y $(b_n)$ dos sucesiones de números enteros que verifican las siguientes condiciones:
- i) $a_0 = 0, b_0 = 8$
- ii) $a_{n+2} = 2a_{n+1}-a_n+2, b_{n+2}=2b_{n+1}-b_n$
- iii) $a_n^2+b_n^2$ es un cuadrado perfecto para todo $n$.
Determinar al menos dos valores del par $(a_{1992}, b_{1992})$.
Suma de las raíces de un polinomio
Sean dados la colección de $n$ números reales positivos $a_1 < a_2 < a_3 < \ldots < a_n$, y la función$$f(x)=\frac{a_1}{x+a_1}+\frac{a_2}{x+a_2}+\ldots +\frac{a_n}{x+a_n}$$ Determinar la suma de las longitudes de los intervalos, disjuntos dos a dos, formados por todos los valores de $x$ tales que $f(x)\gt 1$.
Suma de una sucesión
Para cada entero positivo $n$, sea $a_n$ el último dígito del número $1+2+3+ ...+n$. Calcular $a_1 + a_2 + a_3 +\ldots+a_{1992}$.
Construir un triángulo (dados ortocentro y dos puntos medios)
Dados 3 puntos no alineados $M, N, P$, sabemos que $M$ y $N$ son puntos medios de dos lados de un triángulo y que $P$ es el punto de intersección de las alturas de dicho triángulo. Construir el triángulo.
¿Puedes maliciar que es suma de dos cuadrados?
Sea $P(X,Y) = 2X^2 - 6XY + 5Y^2$. Diremos que un número entero $A$ es un valor de $P$ si existen números enteros $B$ y $C$ tales que $A = P(B,C)$.
- i) Determinar cuántos elementos de $\{1, 2, 3, ... ,100\}$ son valores de $P$.
- ii) Probar que el producto de valores de $P$ es un valor de $P$.
Combinatoria con números de 3 cifras distintas elegidas de entre 5
Encontrar un número $N$ de cinco cifras diferentes y no nulas, que sea igual a la suma de todos los números de tres cifras distintas que se pueden formar con las cinco cifras de $N$.
Función creciente en [0,1]
Sea $F$ una función creciente definida para todo número real $x$, $0\leq x \leq 1, tal que:
- (a) $F(0) = 0$
- (b) $F(x/3) = F(x)/2$
- (c) $F(1-x) = 1 - F(x)$
Encontrar $F(18/1991)$
Dos perpendiculares seccionan un cuadrado
Dos rectas perpendiculares dividen un cuadrado en cuatro partes, tres de las cuales tienen cada una área igual a 1. Demostrar que el área del cuadrado es cuatro.