Avanzado

Problemas de nivel nacional.
Problema

Elección con restricción negativa

Enviado por jmd el 25 de Noviembre de 2013 - 22:37.

¿Cuál es la mayor cantidad de elementos que puedes tomar del conjunto de números
enteros $\{1,2, . . . ,2012,2013\}$, de tal manera que entre ellos no haya tres distintos,
digamos $a, b, c$, tales que $a$ sea divisor o múltiplo de $b−c$?
 

Problema

Competencia entre 7 jugadores!!!

Enviado por cuauhtemoc el 28 de Mayo de 2012 - 18:38.

Se quiere diseñar una competencia entre 7 jugadores de tal manera que de cualquier colección de 3 de ellos al menos dos compitan entre sí. ¿Cuál es el mínimo número de juegos con el que se puede lograr esta condición?

Problema

Testamento..... A ver si puedes

Enviado por Adiel el 20 de Mayo de 2012 - 19:03.

La mamá de Vero esta haciendo su testamento. A sus tres hijas le dará en herencia el número de pesos que calculen como sigue:

Problema

EGMO Problema 2 - Máxima cantidad de renglones en una tabla

Enviado por jesus el 25 de Abril de 2012 - 17:41.

Sea $n$ un entero positivo, encuentra el entero más grande $m$, en términos de $n$ con la siguiente propiedad:

Una tabla con m renglones y n columnas puede ser llenada con números reales de tal manera que dos diferentes renglones,  $[a_1, a_2, \dots , a_n]$ and $[b_1, b_2, \ldots, b_n]$ satisfacen que $$\max(|a_1 − b_1|, |a_2 − b_2|,\dots , |a_n − b_n|) = 1.$$

©Traducido de la versión en ingles por Matetam.com

Problema

EGMO Problema 1 - Sobre dos circuncentros y demostrar que una línea es perpendicular

Enviado por jesus el 25 de Abril de 2012 - 14:14.

Sea ABC un triángulo con circuncentro O. Los puntos D, E y F se encuntran en el interio de los lados BC, CA y AB respectivamente, de tal manera que DE es perpendicular a CO y DF such that DE is perpendicular to CO and DF is perpendicular to BO. (Por punto interior nos referimos, por ejemplo, a que el punto D se encuentra sobre la línea BC y D está entre B y C en esa línea)

Consideremos K el circuncentro del triángulo AFE. Desmuestra que las líneas DK y BC son perpendiculares.

©Traducido de la versión en ingles para Matetam.com

Problema

Juego de intercambios con piedras coloreadas

Enviado por jmd el 11 de Enero de 2012 - 20:59.

Sean $k$ y $n$ enteros positivos con $k\geq 2$. En una línea recta se tienen $kn$ piedras de $k$ colores diferentes. de tal forma que hay $n$ piedras de cada color. Un paso consiste en intercambiar de posición dos piedras adyacentes. Encontrar el menor entero positivo $m$ tal que siempre es posible lograr con a lo sumo $m$ pasos que las $n$ piedras de cada color queden seguidas si:

  • a) $n$ es par,
  • b) $n$ es impar y $k=3$
Problema

Desigualdad con multiplicadores en $\{-1,1\}$

Enviado por jmd el 11 de Enero de 2012 - 20:55.

Sean $x_1,x_2,\ldots,x_n$ números reales positivos. Demostrar que existen $a_1,a_2,\ldots,a_n\in\{-1,1\}$ tales que  $$a_1x_1^2+a_2x_2^2+\ldots+a_nx_n^2\geq(a_1x_1+a_2x_2+\ldots+a_nx_n)^2$$

Problema

Ortocentro de un acutángulo

Enviado por jmd el 11 de Enero de 2012 - 20:54.

Sea $ABC$ un triángulo acutángulo con $AC\neq BC$, y sea $O$ su circuncentro. Sean $P$ y $Q$ puntos tales que $BOAP$ y $COPQ$ son paralelogramos. Demostrar que $Q$ es ortocentro de $ABC$.

Problema

Triángulo con incírculo y tres circunferencias más

Enviado por jmd el 11 de Enero de 2012 - 20:53.

Sea $ABC$ un triángulo y sean $X,Y,Z$ los puntos de tangencia de su incírculo con los lados $BC,CA,AB$, respectivamente. Suponga que $C_1,C_2,C_3$ son circunferencias con cuerdas $XY,ZX,YZ$, respectivamente, tales que $C_1$ y $C_2$ se cortan sobre la recta $CZ$ y que $C_1$ y $C_3$ se corten sobre la recta $BY$. Suponga que $C_1$ corta a las cuerdas $XY$ y $ZX$ en $J$ y $M$, respectivamente; que $C_2$ corta a las cuerdas $YZ$ y $XY$ en $L$ e $I$, respectivamente; y que $C_3$ corta a las cuerdas $YZ$ y $ZX$ en $K$ y $N$, respectivamente. Demostrar que $I,J,K,L,M,N$ están sobre una misma circunferencia.

Problema

Ecuación de inversos OIM 2011

Enviado por jmd el 11 de Enero de 2012 - 20:51.

Encontrar todos los enteros positivos $n$ para los cuales existen tres enteros no nulos $x,y,z$ tales que $x+y+z=0$ y $$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{n}$$

Distribuir contenido