¡Tienes que ver la conexión!
En este post voy a comentar sobre una estrategia del problem solving de concurso que podríamos llamar ¡Tienes que ver la conexión!. Lo haré a través de dos ejemplos clásicos y relativamente bien conocidos en los círculos de la olimpiada de matemáticas.
Problema 1: Si la suma de dos números es 2 y su producto es 3 ¿cuál es la suma de sus recíprocos?
Brilliant: un sitio Web para el talento matemático juvenil
En estos días de febrero Valentina y Jesús vinieron a Cd. Victoria de visita y me recomendaron visitara y navegara el sitio Web https://brilliant.org/, un sitio extraordinariamente bien construido y con los mismos temas de MaTeTaM. La idea sería decidir si matetam.com pudiera aspirar a brilliant.org --o, por lo menos, adoptar su formato.
Enseguida describo mi experiencia en brilliant y, al mismo tiempo, extiendo con ello una invitación a los usuarios de matetam.com para que visiten brilliant y pongan manos a la obra en el problem solving de concurso.
La caja de Arquímedes: un rompecabezas milenario

Soluciones múltiples para un problema geométrico
Una vez superada la cuesta de enero encontré este problema de geometría en la Web el cual comparto con los lectores de MaTeTaM. Doy la solución vectorial y varias sugerencias para soluciones sintéticas. (La idea es recomendar a los cognizadores preparándose para concursos de matemáticas escolares a no abandonar un problema después de obtener una solución. Buscar otras soluciones los hará más sabios en el arte del problem solving.)

Olimpiada de matemáticas en la educación básica de Tamaulipas
(Tarde pero sin sueño) la Secretaría de Educación de Tamaulipas (SET) abrió una convocatoria para la Primera Olimpiada de Matemáticas en Educación Básica.
Dada la semejanza que tienen los problemas de olimpiada con las preguntas de los dos examenes estandarizados que se han aplicado en Tamaulipas (y en todo México) durante años (PISA a partir de 2003 y ENLACE desde 2006) se puede conjeturar que esta olimpiada de matemáticas para la educación básica en Tamaulipas está orientada a mejorar nuestro desempeño en ENLACE o el que lo sustituya.

Calendario dodecaédrico con origami 2014
Para hacer el calendario sólo tienen que descargar, imprimir, doblar y armar. Aquí está el video con las intrucciones de armado que hicimos para la versión 2010.
Algunos de ustedes nos han comentado que les sobran muchas pestañas a la hora de armarlo. Les queremos decir que sí es posible armarlo sin pegamento y sin que sobren pestañas.

Jugadores de ocasión y jugadores de club
Haciendo eco de una idea de Jesùs Rodrìguez Viorato, sobre la insuficiencia de los cursos escolares de matemáticas para un buen desempeño en un concurso de matemáticas, enseguida voy a proponer la analogía entre los adolescentes aficionados a las matemáticas y los jugadores de ajedrez.
Una anécdota personal --el jugador ocasional
Hace muchos años cuando ingresé a la UAT como profesor, después de llegar a Ciudad Victoria tras un journey de 7 años en la Ciudad de México, uno de mis estudiantes llevó un ajedrez y me invitó a jugar a la hora del receso de media mañana.
Entrevista a Jesús Rodríguez Viorato
Enseguida pueden leer la entrevista que le hice a Jesús Rodrìguez Viorato sobre el concurso nacional de la XXVII Olimpiada Mexicana de Matemáticas. Jesús es un ex-olímpico internacional (bronce en la IMO de 1997 y oro en la Iberoamericana de ese año. Originario de Mexicali estudió la licenciatura de matemáticas en el CIMAT (Centro de Investigación en Matemáticas, A.C. en Guanajuato) y la maestría en matemáticas en el IMATE (Instituto de Matemáticas de la UNAM).
El "fácil" de la XXVII OMM 2013
Como se sabe el fácil del concurso nacional 2013 de la XXVII OMM resultó una sorpresa (por su grado de dificultad) para la mayoría de los concursantes.
En palabras de Germán Puga (el favorito de la selección Tamaulipas) "el problema uno era uno de esos de 'cómo demuestro algo tan fácil' "
Creo que la valoración de Germán es una valoración muy acertada del problema 1 del XXVII concurso nacional de la OMM 2013. Voy enseguida a comentar sobre ese problema para tratar de ubicar cuáles son los puntos o aspectos que lo hacen difícil.
Resultados de la XXVII OMM 2013 --aftermath
Tratando de ser positivos con los resultados de Tamaulipas en el concurso nacional de la XXVII OMM 2013 se diría: le ganamos a Chiapas, Quintana Roo y Tabasco --y Germán Puga obtuvo medalla de Bronce. Pero siendo realistas, nos fue de la patada.
Pues esos tres estados a los que les ganamos son los tres últimos lugares del concurso... y de Germán se esperaba una plata. Pero no contábamos con que el nivel de dificultad del concurso nacional aumentó considerablemente este año.
Es por eso que (creo) no es un ejercicio inútil comentar brevemente
