Geometría
Punto medio de la mediana
Sea $M$ el punto medio de la mediana $AD$ del triángulo $ABC$ ($D$ pertenece al lado $BC$). La recta $BM$ corta al lado $AC$ en el punto $N$. Demuestre que $AB$ es tangente a la circunferencia circunscrita al triángulo $NBC$ si, y sólo si, se verifica la igualdad $$\frac{BM}{MN}=\left(\frac{BC}{BN}\right)^2$$
... y se forma un trapecio isósceles...
La circunferencia inscrita en el triángulo $ABC$ es tangente a $BC, CA$ y $AB$ en $D, E$ y $F$, respectivamente. Suponga que dicha circunferencia corta de nuevo a $AD$ en su punto medio $X$, es decir, $AX = XD$. Las rectas $XB$ y $XC$ cortan de nuevo a la circunferencia inscrita en $Y$ y en $Z$, respectivamente. Demuestre que $EY = FZ$.
Perpendicular común a dos rectas en el espacio
Sean $r$ y $s$ dos rectas ortogonales y que no están en el mismo plano. Sea $AB$ su perpendicular común, donde $A$ pertenece a $r$ y $B$ a $s$. Se considera la esfera de diámetro $AB$. Los puntos $M$, de la recta $r$ y $N$, de la recta $s$, son variables, con la condición de que $MN$ sea tangente a la esfera en un punto $T$. Determine el lugar geométrico de $T$. Nota: el plano que contiene a $B$ y $r$ es perpendicular a $s$.
Transformación de acutángulo a equilátero (en el circuncírculo de aquél)
Se dan los puntos $A, B, C$ sobre una circunferencia $K$ de manera que el triángulo $ABC$ sea acutángulo. Sea $P$ un punto interior a $K$. Se trazan las rectas $AP, BP, CP$, que cortan de nuevo a la circunferencia en $X, Y, Z$. Determinar el punto $P$ que hace equilátero al triángulo $XYZ$.
Cuadrilátero inscriptible y circunscriptible
Dado un cuadrilátero inscrito en una circunferencia, sus vértices se denotan consecutivamente por $A, B, C, D$. Se supone que existe una semicircunferencia con centro en $AB$, tangente a los otros tres lados del cuadrilátero.
- i) Demostrar que $AB = AD + BC$.
- ii) Calcular, en función de $x = AB, y = CD$, el área máxima que puede alcanzar un cuadrilátero que satisface las condiciones del enunciado.
Cardinalidad de un conjunto finito de puntos
Sean $P$ y $Q$ dos puntos distintos en el plano. Denotemos por $m (PQ)$ la mediatriz del segmento $PQ$. Sea $S$ un subconjunto finito del plano, con más de un elemento, que satisface las siguientes propiedades:
- a) Si $P$ y $Q$ están en $S$, entonces $m (PQ)$ intersecta a $S$.
- b) Si $P_1Q_1, P_2Q_2, P_3Q_3$ son tres segmentos diferentes cuyos extremos son puntos de $S$, entonces no existe ningún punto de $S$ en la intersección de las tres líneas $m(P_1Q_1), m(P_2Q_2),m(P_3Q_3$).
Determine el número de puntos que puede tener $S$.
¿Cómo se encierra un n-polígono en un paralelogramo?
Muestre que, para cualquier polígono convexo de área uno, existe un paralelogramo de área 2 que lo contiene.
¿Cómo era el generalizado de senos?
A partir del triángulo $T$ de vértices $A, B, C$, se construye el hexágono $H$ de vértices $A_1, A_2, B_1, B_2, C_1, C_2$ como se muestra en la figura. Demostrar que
Construcción de un trapecio inscrito
Se dan la circunferencia $\Gamma$ y los números positivos $h, m$ de modo que existe un trapecio $ABCD$, inscrito en $\Gamma$, de altura $h$ y tal que la suma de sus bases $AB$ y $CD$ es $m$. Construir el trapecio $ABCD$.
¿Sabes geometría analítica? (alternativa: Stewart)
En un triángulo equilátero $ABC$, cuyo lado tiene longitud 2, se inscribe la circunferencia $\Gamma$.
- a) Demostrar que para todo punto $P$ de $\Gamma$, la suma de los cuadrados de sus distancias a los vértices $A, B$ y $C$ es 5.
- b) Demostrar que para todo punto $P$ de $\Gamma$, es posible construir un triángulo cuyos lados tienen las longitudes de los segmentos $AP, BP$ y $CP$, y cuya área es $\sqrt{3}/4$