Geometría

Problema

Un cuadrilátero con muchos segmentos iguales

Enviado por jmd el 29 de Abril de 2012 - 10:17.

En un cuadrilátero $ABCD$, con ángulos interiores menores a 180 grados, los lados $AB, BC$ y $CD$ son iguales. También sabemos que $AD = AC = BD$. Encuentra la medida del ángulo $ABC$.

 

Problema

¿Cuál mediana forma dos isósceles?

Enviado por jmd el 28 de Abril de 2012 - 18:06.

Sean $ABC$ un triángulo, y $D$ y $E$ puntos sobre $AC$ y $BC$, respectivamente, tales que $AB$ es paralelo a $DE$. Sea $P$ el pie de la altura trazada desde $A$ al segmento $BC$. Si el ángulo $ACB$ es de 20 grados y $AB = 2DE$, encuentre el valor del ángulo $PDC$.

 

Problema

Altura de un paralelogramo

Enviado por jmd el 28 de Abril de 2012 - 07:27.

En la figura, el rectángulo tiene lados de 10 cm. y de 8 cm. y éstos se han dividido como se indica de manera que al unir los puntos de división se forma un paralelogramo (ojo sus ángulos no son rectos). Calcula la distancia entre los lados paralelos más pequeños, indicada con la línea d.

Problema

Triángulos en una circunferencia

Enviado por jmd el 28 de Abril de 2012 - 07:17.

 

Sean $AB$ es el diámetro de una circunferencia con centro en el punto $D$, y $C$ un punto en $AB$ de tal manera que $AC$ es la mitad de $CB$. Por el punto $C$ se traza una perpendicular a $AB$ que corta a la circunferencia en los puntos $E$ y $F$. Si el área del triángulo $ABE$ es de $60 cm^2$ ¿cuánto vale el área del triángulo $DEF$?

 

Problema

EGMO Problema 1 - Sobre dos circuncentros y demostrar que una línea es perpendicular

Enviado por jesus el 25 de Abril de 2012 - 13:14.

Sea ABC un triángulo con circuncentro O. Los puntos D, E y F se encuntran en el interio de los lados BC, CA y AB respectivamente, de tal manera que DE es perpendicular a CO y DF such that DE is perpendicular to CO and DF is perpendicular to BO. (Por punto interior nos referimos, por ejemplo, a que el punto D se encuentra sobre la línea BC y D está entre B y C en esa línea)

Consideremos K el circuncentro del triángulo AFE. Desmuestra que las líneas DK y BC son perpendiculares.

©Traducido de la versión en ingles para Matetam.com

Problema

Ortocentro de un acutángulo

Enviado por jmd el 11 de Enero de 2012 - 19:54.

Sea $ABC$ un triángulo acutángulo con $AC\neq BC$, y sea $O$ su circuncentro. Sean $P$ y $Q$ puntos tales que $BOAP$ y $COPQ$ son paralelogramos. Demostrar que $Q$ es ortocentro de $ABC$.

Problema

Triángulo con incírculo y tres circunferencias más

Enviado por jmd el 11 de Enero de 2012 - 19:53.

Sea $ABC$ un triángulo y sean $X,Y,Z$ los puntos de tangencia de su incírculo con los lados $BC,CA,AB$, respectivamente. Suponga que $C_1,C_2,C_3$ son circunferencias con cuerdas $XY,ZX,YZ$, respectivamente, tales que $C_1$ y $C_2$ se cortan sobre la recta $CZ$ y que $C_1$ y $C_3$ se corten sobre la recta $BY$. Suponga que $C_1$ corta a las cuerdas $XY$ y $ZX$ en $J$ y $M$, respectivamente; que $C_2$ corta a las cuerdas $YZ$ y $XY$ en $L$ e $I$, respectivamente; y que $C_3$ corta a las cuerdas $YZ$ y $ZX$ en $K$ y $N$, respectivamente. Demostrar que $I,J,K,L,M,N$ están sobre una misma circunferencia.

Problema

Colinealidad en configuración de cíclico con ortodiagonales

Enviado por jmd el 11 de Enero de 2012 - 19:45.

Sea $ABCD$ un cuadrilátero cíclico cuyas diagonales $AC$ y $BD$ son perpendiculares. Sean $O$ el circuncentro de $ABC$, $K$ el punto de intersección de las diagonales, $L\neq O$ el punto de intersección de las circunferencias circunscritas a $OAC$ y $OBD$, y $G$ el punto de intersección de las diagonales del cuadrilátero cuyos vértices son los puntos medios de los lados de $ABCD$. Demostrar que $O,K, L,G$ están alineados.

Problema

Concurrencia en configuración de in y circuncírculos

Enviado por jmd el 11 de Enero de 2012 - 19:41.

Sea $\Gamma$ el incírculo de un triángulo escaleno $ABC$, que es tangente a los lados $BC,CA,AB$ en los puntos $D,E,F$ respectivamente. Las rectas $EF$ y $BC$ se cortan en $G$. La circunferencia de diámetro $GD$ corta a $\Gamma$ por segunda vez en $R$. Sean $P$ y $Q$ los puntos de intersección (distintos de $R$) de $\Gamma$ con $BR$ y $CR$, respectivamente. Las rectas $BQ$ y $CP$ se cortan en $X$, el circuncírculo de $CDE$ corta a $QR$ en $M$ y el circuncírculo de $BDF$ corta a $PR$ en $N$. Demostrar que $PM, QN$ y $RX$ son concurrentes.

Problema

Desigualdad con áreas de dos triángulos

Enviado por jmd el 10 de Enero de 2012 - 15:10.

Sean $ABC$ un triángulo y $X,Y,Z$ puntos interiores de los lados $BC,CA,AB$ respectivamente. Sean $A',B',C'$ los circuncentros correspondientes a los triángulos $AZY,BXZ,CYX$, respectivamente. Demuestre que:
$$(A'B'C')\geq (ABC)/4$$
y que la igualdad ocurre si y sólo si $AA',BB'$ y $CC'$ son concurrentes.

Nota: Para un triángulo cualquiera $RST$, denotamos su área con $(RST)$.

Distribuir contenido