Geometría

Problema

EGMO Problema 1 - Sobre dos circuncentros y demostrar que una línea es perpendicular

Enviado por jesus el 25 de Abril de 2012 - 14:14.

Sea ABC un triángulo con circuncentro O. Los puntos D, E y F se encuntran en el interio de los lados BC, CA y AB respectivamente, de tal manera que DE es perpendicular a CO y DF such that DE is perpendicular to CO and DF is perpendicular to BO. (Por punto interior nos referimos, por ejemplo, a que el punto D se encuentra sobre la línea BC y D está entre B y C en esa línea)

Consideremos K el circuncentro del triángulo AFE. Desmuestra que las líneas DK y BC son perpendiculares.

©Traducido de la versión en ingles para Matetam.com

Problema

Ortocentro de un acutángulo

Enviado por jmd el 11 de Enero de 2012 - 20:54.

Sea $ABC$ un triángulo acutángulo con $AC\neq BC$, y sea $O$ su circuncentro. Sean $P$ y $Q$ puntos tales que $BOAP$ y $COPQ$ son paralelogramos. Demostrar que $Q$ es ortocentro de $ABC$.

Problema

Triángulo con incírculo y tres circunferencias más

Enviado por jmd el 11 de Enero de 2012 - 20:53.

Sea $ABC$ un triángulo y sean $X,Y,Z$ los puntos de tangencia de su incírculo con los lados $BC,CA,AB$, respectivamente. Suponga que $C_1,C_2,C_3$ son circunferencias con cuerdas $XY,ZX,YZ$, respectivamente, tales que $C_1$ y $C_2$ se cortan sobre la recta $CZ$ y que $C_1$ y $C_3$ se corten sobre la recta $BY$. Suponga que $C_1$ corta a las cuerdas $XY$ y $ZX$ en $J$ y $M$, respectivamente; que $C_2$ corta a las cuerdas $YZ$ y $XY$ en $L$ e $I$, respectivamente; y que $C_3$ corta a las cuerdas $YZ$ y $ZX$ en $K$ y $N$, respectivamente. Demostrar que $I,J,K,L,M,N$ están sobre una misma circunferencia.

Problema

Colinealidad en configuración de cíclico con ortodiagonales

Enviado por jmd el 11 de Enero de 2012 - 20:45.

Sea $ABCD$ un cuadrilátero cíclico cuyas diagonales $AC$ y $BD$ son perpendiculares. Sean $O$ el circuncentro de $ABC$, $K$ el punto de intersección de las diagonales, $L\neq O$ el punto de intersección de las circunferencias circunscritas a $OAC$ y $OBD$, y $G$ el punto de intersección de las diagonales del cuadrilátero cuyos vértices son los puntos medios de los lados de $ABCD$. Demostrar que $O,K, L,G$ están alineados.

Problema

Concurrencia en configuración de in y circuncírculos

Enviado por jmd el 11 de Enero de 2012 - 20:41.

Sea $\Gamma$ el incírculo de un triángulo escaleno $ABC$, que es tangente a los lados $BC,CA,AB$ en los puntos $D,E,F$ respectivamente. Las rectas $EF$ y $BC$ se cortan en $G$. La circunferencia de diámetro $GD$ corta a $\Gamma$ por segunda vez en $R$. Sean $P$ y $Q$ los puntos de intersección (distintos de $R$) de $\Gamma$ con $BR$ y $CR$, respectivamente. Las rectas $BQ$ y $CP$ se cortan en $X$, el circuncírculo de $CDE$ corta a $QR$ en $M$ y el circuncírculo de $BDF$ corta a $PR$ en $N$. Demostrar que $PM, QN$ y $RX$ son concurrentes.

Problema

Desigualdad con áreas de dos triángulos

Enviado por jmd el 10 de Enero de 2012 - 16:10.

Sean $ABC$ un triángulo y $X,Y,Z$ puntos interiores de los lados $BC,CA,AB$ respectivamente. Sean $A',B',C'$ los circuncentros correspondientes a los triángulos $AZY,BXZ,CYX$, respectivamente. Demuestre que:
$$(A'B'C')\geq (ABC)/4$$
y que la igualdad ocurre si y sólo si $AA',BB'$ y $CC'$ son concurrentes.

Nota: Para un triángulo cualquiera $RST$, denotamos su área con $(RST)$.

Problema

Bisectriz externa en un escaleno

Enviado por jmd el 10 de Enero de 2012 - 16:06.

Sean $ABC$ un triángulo escaleno y $l$ la bisectriz exterior del $\angle{ABC}$. Sean $P$  y  $Q$ los pies de las perpendiculares a la recta $l$ que pasan por $A$ y $C$, respectivamente. Sean $M$ y $N$ las intersecciones de $CP$ y $AB$ y $AQ$ y $BC$, respectivamente. Pruebe que las rectas $AC,MN$ y $l$ tienen un punto en común.

Problema

Familia de hexágonos convexos

Enviado por jmd el 10 de Enero de 2012 - 09:39.

Sea $F$ la familia de todos los hexágonos convexos $H$ que satisfacen las siguientes condiciones:

  • (a) los lados opuestos de $H$ son paralelos;
  • (b) tres vértices cualesquiera de $H$ se pueden cubrir con una franja de ancho 1.

Determinar el menor número real $l$ tal que cada uno de los hexágonos de la familia $F$ se puede cubrir con una franja de ancho $l$.

Nota: Una franja de ancho $l$ es la región del plano comprendida entre dos rectas paralelas que están a distancia $l$ (incluidas ambas rectas paralelas).

Problema

Concéntrica al incírculo de ABC

Enviado por jmd el 10 de Enero de 2012 - 09:25.

Sean $ABC$ un triángulo con incentro $I$ y $\Gamma$ una circunferencia de centro $I$, de radio mayor al de la circunferencia inscrita y que no pasa por ninguno de los vértices. Sean $X_1$ el punto de intersección de $\Gamma$ con la recta $AB$ más cercano a $B$; $X_2$ y $X_3$ los puntos de intersección de $\Gamma$ con la recta $BC$ siendo $X_2$ más cercano a $B$; y $X_4$ el punto de intersección de $\Gamma$ con la recta $CA$ más cercano a $C$. Sea $K$ el punto de intersección de las rectas $X_1X_2$ y $X_3X_4$. Demostrar que $AK$ corta al segmento $X_2X_3$ en su punto medio.

Problema

Vértice en la mediatriz

Enviado por jmd el 9 de Enero de 2012 - 23:07.

Sea $n\gt 1$ un entero impar. Sean $P_0$ y $P_1$ dos vértices consecutivos
de un polígono regular de $n$ lados. Para cada $k\geq 2$, se define $P_k$ como el vértice del polígono dado que se encuentra en la mediatriz de $P_{k-1}$ y $P_{k-2}$. Determine para qué valores de $n$ la sucesión $P_0, P_1, P_2,\ldots,$ recorre todos los vértices del polígono.

Distribuir contenido