Problemas - Teoría de números

Problema

Domingo Siete y los tazos de Pokemon

Enviado por jmd el 4 de Junio de 2009 - 04:53.

Dominguito Siete se reune cada domingo con sus amigos y lleva tazos de Pokemon. Cuando el número de tazos es múltiplo de 7, los reparte a partes iguales entre  sus 6 amigos y él.

Problema

El fácil del Regiones 2009

Enviado por jmd el 31 de Mayo de 2009 - 13:21.

¿Cuántos números $abcd$ de 4 dígitos distintos, múltiplos de 36 y menores que 4000 son tales que el producto de $ab$ por $cd$ es múltiplo de 7?

Problema

Diofantina condicionada

Enviado por jmd el 27 de Mayo de 2009 - 13:19.

Encontrar todos las parejas de enteros positivos $(x, y)$ que sean solución de la ecuación diofantina $20x+9y=2009$, y que además sean cuadrados perfectos consecutivos. Nota: $(x,y)=(100,1)$ y $(x,y)=(1,221)$ son soluciones de la ecuación diofantina pero no cumplen la condición.
 

Problema

Propiedades del máximo común divisor

Enviado por jmd el 24 de Mayo de 2009 - 18:46.

Demostrar las siguientes propiedades del máximo común divisor de dos números $a$ y $b.$ Nota: hay dos formas usuales de notación para el máximo común divisor, MCD$(a,b)$ o simplemente $(a,b)$.

Problema

Trivial --pero no para el novicio

Enviado por jmd el 24 de Mayo de 2009 - 18:19.

Demostrar que $n^2-1$ es múltiplo de 8 para cualquier $ n $ impar no negativo.

Problema

Diofantina en dos variables

Enviado por jmd el 24 de Mayo de 2009 - 17:56.

Encontrar todas las parejas $(x,y)$ de enteros que satisfacen la ecuación diofantina $x^3+y^3=4(x^2y+xy^2)+1.$

Problema

Lema de Euclides --instancia de uso

Enviado por jmd el 24 de Mayo de 2009 - 10:41.

Encontrar todas las parejas $(a,b)$ de enteros positivos para los cuales el producto $(a^4+1)(b^2-1)$ es divisible entre 39 pero sus factores $(a^4+1)$ y $(b^2-1)$ no.
 

Problema

P1. OMM 1987. Suma de dos fracciones que dan entero

Enviado por jesus el 23 de Mayo de 2009 - 14:31.

Consideremos dos fracciones reducidas $\frac{a}{b}$ y $\frac{c}{d}$ con $ b, d>0$ . Si la suma de estas dos fracciones es un número entero entonces $b=d$.

Problema

Problema 1, ONMAS 2008

Enviado por arbiter-117 el 22 de Mayo de 2009 - 21:42.

¿Cuántos divisores cuadrados perfectos tiene el número $ 2008^{2008} $ ?

Problema

Las cervezas de Bart Simpson

Enviado por jmd el 21 de Mayo de 2009 - 11:11.

Bart Simpson cuenta, usando sus dedos de la mano derecha, las cervezas que se ha tomado su papá en la semana. Si cuenta empezando con el meñique y termina en el índice pulgar y vuelve a empezar con el meñique, y contó 777 ¿en qué dedo terminó la cuenta? (Nota: Bart solamente tiene 4 dedos. Además, hay que suponer que sabe contar hasta 777...) ¿En qué dedo terminaría si tuviese 5 dedos?