Problemas
También puedes compartirnos alguno de tus problemas favoritos:
Problema 5 (IMO 2011)
Sea $f$ una función de los enteros a los enteros positivos. Suponga que, para cualesquiera dos enteros $m,n$, la diferencia $f(m)-f(n)$ es divisible entre $f(m-n)$. Demostrar que, para todos los enteros $m$ y $n$ con $f(m)\leq f(n)$, el número $f(n)$ es divisible entre $f(m)$.
Problema 4 (IMO 2011)
Sea $n>0$ un entero. Se tiene disponible una balanza y $n$ pesas de pesos $2^0,2^1,2^2,\ldots,2^{n-1}$. Debemos colocar cada una de las pesas en la balanza, una después de otra, de tal manera que el lado derecho nunca sea más pesado que el izquierdo. En cada paso elegimos una de las pesas que aún no ha sido colocada en la balanza, y la colocamos en alguno de los dos lados, hasta que todas las pesas han sido colocadas. Determinar el número de formas en que eso puede hacerse.
Caracterización del ortocentro
Demostrar que un punto $P$ en el interior de un triángulo acutángulo $XYZ$ es el ortocentro de éste si y sólo si
- $XP$ es perpendicular a $YZ$, y
- el reflejo de $P$ en el lado $YZ$ pertenece al circuncírculo de $XYZ$.
Suma de razones de segmentos
Sea $P$ un punto interior del triángulo $ABC$. Los rayos $AP,BP,CP$ cortan los lados $BC,CA,AB$ en los puntos $D,E,F$, respectivamente. Demostrar que
Método de áreas (revisitado)
Sean dados dos segmentos $AB$ y $PQ$, y suponga que los segmentos o sus prolongaciones se cortan en el punto $M$. Demostrar que la razón de las áreas de los triángulos $ABP$ y $ABQ$ es igual a la razón de las distancias de $P$ a $M$ y de $Q$ a $M$.
Ejercicio clásico (con descubrimiento semiguiado)
Sea $D$ un punto en la base $BC$ de un triángulo, y consideremos los triángulos $ABD$ y $ACD$.
- Demostrar que la razón de sus áreas es igual a la razón de sus bases $BD$ y $CD$.
- Demostrar que si $D$ es el punto medio de $BC$ entonces sus áreas son iguales.
- Demostrar que si $D$ es el punto en que la bisectriz del ángulo $A$ corta a la base $BC$, entonces $AB/AC=BD/CD$ (teorema de la bisectriz).
Reflexión de pies de alturas (P6)
Sea $ABC$ un triángulo acutángulo y sean $D$, $E$ y $F$ los pies de las alturas desde $A$, $B$ y $C$, respectivamente. Sean $Y$ y $Z$ los pies de las perpendiculares desde $B$ y $C$ sobre $FD$ y $DE$, respectivamente. Sea $F_1$ la reflexión de $F$ con respecto a $E$ y $E_1$ reflexión de $E$ respecto a $F$. Si $3EF = FD+DE$ demuestra que $\angle BZF_1 = \angle CYE_1$.
Nota. La reflexión de un punto $P$ respecto a un punto $Q$ es el punto $P_1$ ubicado sobre la recta $PQ$ tal que $Q$ queda entre $P$ y $P_1$, y $PQ = QP_1$
Sistema de ecuaciones en tres variable (P5)
Los números reales positivos $x$, $y$, $z$ son tales que:
$$x+ \frac{y}{z} = y + \frac{z}{x} = z + \frac{x}{y} = 2$$
Determina todos los valores posibles de $x+y+z$.
Diofantina con tres primos (P4)
Encuentra todos los enteros positivos $p$, $q$ y $r$, con $p$ y $q$ números primos, que satisfacen la igualdad:
$$\frac{1}{p+1}+\frac{1}{q+1} - \frac{1}{(p+1)(q+1)} = \frac{1}{r}$$
Desliz tras desliz te lleva a 5 (P3)
Aplicar un desliz a un entero $n \geq 2$ significa tomar cualquier primo $p$ que divida a $n$ y remplazar $n$ por $\frac{n + p^2}{p}$.
Se comienza con un entero cualquiera mayor o igual que $5$ y se le aplica un desliz. Al número así obtenido se le aplica un desliz, y así sucesivamente se siguen aplicando deslices. Demuestra que sin importar los deslices aplicados, en algún momento se obtiene el número 5.
Triángulo escaleno (P2)
Sea $ABC$ un triángulo escaleno, $D$ el pie de la altura desde $A$, $E$ la intersección del lado $AC$ con la bisectriz del lado $\angle ABC$, y $F$ un punto sobre el lado $AB$. Sea $O$ el circuncentro del triángulo $ABC$ y sean $X$, $Y$ y $Z$ los puntos donde se cortan las rectas $AD$ con $BE$, $BE$ con $CF$, $CF$ con $AD$, respectivamente. Si $XYZ$ es un triángulo equilátero, demuestra que uno de los triángulos $OXY$, $OYZ$, $OZX$ es un triángulo equilátero.
Moscas en un cubo (P1)
En cada uno de los vértices de un cubo hay una mosca. Al sonar el silbato cada una de las moscas vuela a alguno de los vértices del cubo situado en una misma cara del vértice de donde partió, pero diagonalmente opuesto a éste. Al sonar el silbato ¿de cuántas maneras pueden volar las moscas de modo que en ningún vértice queden dos o más moscas?
Homotecia en un isósceles
Considere un triángulo $ABC$ con $AB=AC$, y sea $D$ el punto medio de $BC$. La circunferencia de diámetro $AD$ corta el lado $AB$ en $B'$ y el lado $AC$ en $C'$. El circuncírculo de $ABC$, con centro en $O,$ es tangente al lado $AB$ en $P$ y al lado $AC$ en $Q$. Si llamamos $M$ al punto medio de $PQ$, demostrar:
- $B'M$ es paralelo a $BO$
- $M$ es equidistante de los lados del triángulo $AB'C'$
Dos cuerdas por el punto medio de una cuerda
Sea $AB$ una cuerda que no pasa por el centro del círculo y considere dos cuerdas $CD,EF$ que se cortan en el punto medio $P$ de $AB$. Demostrar que si las tangentes a la circunferencia en $C$ y $D$ se cortan en $Q$, y las tangentes en $E$ y $F$ se cortan en $R$, entonces $QR$ es paralela a $AB$.
Criterio para establecer cíclico con potencia de un punto
Si las rectas $AB,CD$ se cortan en $P$ y $PA\cdot{PB}=PC\cdot{PD}$, entonces los puntos $A,B,C,D$ pertenecen a una misma circunferencia. Demostrarlo.
Bisectriz, dos triángulos, circuncírculos, potencia...
La bisectriz del ángulo $B$ del triángulo $ABC$ corta a $CA$ en $D$. El circuncírculo del triángulo $BCD$ corta el lado $AB$ en $E$, y el circuncírculo del triángulo $ABD$ corta al lado $BC$ en $F$. Demostrar que $AE=CF$.
Dos homotecias en un trapecio
Las prolongaciones de los lados $AB$ y $CD$ de un trapecio se intersecan en $K$, y sus diagonales en $L$. Si $M,N$ son los puntos medios de de las bases, demostrar que los puntos $K,L,M,N$ están en una misma recta.
Paralelogramo de baricentros
Las diagonales de un cuadrilátero convexo dividen a éste en cuatro triángulos. Demostrar que sus baricentros forman un paralelogramo.
Transformación geométrica de una circunferencia
Sean dadas dos circunferencias de radios diferentes y una afuera de la otra, y $H$ la intersección de sus tangentes exteriores comunes. Demostrar que para cualquier punto $A$ en una de las circunferencias, existe un punto $B$ en la otra de tal manera que $HA\cdot{HB}=HP\cdot{HQ}$, donde $P,Q$ son los puntos de tangencia de una de las tangentes comunes.
Transformación geométrica de una recta
Sean dadas una circunferencia de radio $r$ y centro $O$, y una recta $l$. Encontrar el lugar geométrico de los puntos $Y$ tales que $OX\cdot OY=r^2$, cuando $X$ se mueve sobre $l$.