Problemas
También puedes compartirnos alguno de tus problemas favoritos:
Transformación geométrica de un punto
Sean dados una circunferencia de centro $O$ y radio $r$, y un punto $A$ en su interior distinto de $O$. Encontrar un punto $B$ en el plano de tal manera que $OA\cdot{OB}=r^2$. Justifica tu respuesta demostrando la validez del procedimiento que ubica el punto $B$.
Construcción de las simedianas
Considérese el circuncírculo del triángulo $ABC$. Demostrar que si $D$ es la intersección de las tangentes al circuncírculo por $B$ y $C$, entonces $AD$ es el reflejo de la mediana del triángulo por $A$, en el espejo de la bisectriz de $A$.
Antiparalelas
Dos rectas se dicen antiparalelas, respecto a un ángulo de referencia, si forman el mismo ángulo en lados opuestos de la bisectriz de ese ángulo.
Demostrar que:
La clave está en la figura
En el triángulo $ABC$, rectángulo en $C$, la bisectriz de $A$ corta a $BC$ en $P$ y la bisectriz de $B$ corta a $CA$ en $Q$. Sean $M$ y $N$ las proyecciones de $P$ y $Q$, respectivamente, sobre el lado $AB$ . Calcular la medida del ángulo $MCN$.
Una propiedad banal de dos isogonales
Sea $ABC$ un triángulo y $\Gamma$ su circuncírculo con centro $O$. La altura de $A$ y el radio $OA$ forman un ángulo cuya medida es la diferencia de las de $B$ y $C$
Circuncentro y ortocentro: una propiedad métrica
Sean $H$ el ortocentro y $O$ el circuncentro del triángulo $ABC$. Si $M$ es el punto medio del lado $BC$, entonces $AH=2MO$. Demostrarlo.
Construcción de un triángulo
Construir el triángulo $ABC$ dadas las longitudes $m_a$ de su mediana desde $A$, $d_a$ de la bisectriz del ángulo $A$, y $h_a$ de la altura del vértice $A$ (respecto a su lado opuesto $BC$).
Isogonales: iso (igual) gono (ángulo)
Demostrar que, en un triángulo $ABC$, la altura de cualquier vértice y la recta que pasa por él y el circuncentro forman el mismo ángulo con la bisectriz (de ese mismo vértice).
Reflejos en el espejo de la bisectiz
Dentro del triángulo $ABC$, considere un punto $P$, y $C'$ y $B'$, los pies de las perpendiculares bajadas desde $P$ a los lados $AB$ y AC, respectivamente. Demostrar que si $Q$ es un punto tal que $C'PB'Q$ es paralelogramo, entonces las rectas $AP$ y $AQ$ son simétricas respecto a la bisectriz del ángulo $A$.
Tres vecinas
A: Al departamento de al lado se acaban de cambiar tres mujeres -según me lo dijo C.
Regla del 41 para ninis
En el país XYZ se aprobó una ley de "jubilación" de ninis (jóvenes que ni estudian ni trabajan). Básicamente, la regla para la "jubilación" es que el joven nini recibirá una pensión estatal de tres salarios mínimos de por vida si sigue siendo joven (menos de 30) y su edad más los años que se ha mantenido nini (sin estudiar ni trabajar) es al menos 41 años. Calcular la edad en que un adolescente de 19 años logrará la pensión si tiene 4 años de nini.
Volumen de una alberca
Una alberca, cuyo espejo del agua es un rectángulo $a\times{b}$, tiene el fondo inclinado también rectangular de manera que la profundidad en un extremo ($h$) es un metro menor que la del otro. Obtener una fórmula para calcular la capacidad de la alberca en metros cúbicos y usarla para $h=1,a=3,b=6$. Nota: puedes suponer que $a,b,h$ están expresadas en metros y las paredes son verticales.
Triángulo rectángulo
El área de un triángulo rectángulo es 150 unidades, y la altura perpendicular a la hipotenusa mide 12. Calcular la longitud de sus lados.
Demostrar que un cuadrilátero es paralelogramo (Problema 5, OIM)
En un triángulo acutángulo ABC sean AE y BF dos alturas, y sea H el ortocentro. La recta simétrica de AE respecto de la bisectriz (interior) del ángulo en A y la recta simétrica de BF respecto de la bisectriz (interior) del ángulo en B se intersecan en un punto O. Las rectas AE y AO cortan por segunda vez a la circunferencia circunscrita al triángulo ABC en los puntos M y N, respectivamente.
Sean: P, la intersección de BC con HN; R, la intersección de BC con OM; y S, la intersección de HR con OP.
Demostrar que AHSO es un paralelogramo.
Tres circunferencias con un punto común. (Problema 2, OIM)
Con centro en el incentro I, de un triángulo ABC se traza una circunferencia que corta en dos puntos a cada uno de los tres lados del triángulo: al segmento BC en D y P (siendo D el más cercano a B); al segmento CA en E y Q (siendo E el más cercano a C), y al segmento AB en F y R (siendo F el más cercano a A).
Sea S el punto de intersección de las diagonales del cuadrilátero EQFR. Sea T el punto de intersección de las diagonales del cuadrilátero FRDP. Sea U el punto de intersección de las diagonales del cuadrilátero DPEQ.
Caracterización de enteros con parte entera (Problema 1, OIM)
Sea $r \geq 1$ un número real que cumple la siguiente propiedad:
Para cada pareja de números enteros positivos $m$ y $n$, con $n$ múltiplo de $m$, se tiene que $\lfloor nr \rfloor$ es múltiplo de $\lfloor mr \rfloor$.
Probar que $r$ es un numero entero.
Nota: Si $x$ es un numero real, denotamos por $\lfloor x \rfloor$ el mayor entero menor o igual que $x$.
Coloraciones de puntos en una cuadrícula (Problema 3, OIM)
Sean $n \geq 2$ un número entero y $D_n$ el conjunto de puntos $(x,y)$ del plano cuyas coordenadas son números enteros con $-n \leq x \leq n $ y $-n \leq y \leq n$
Sucesión de cuadrados
Demostrar que todos los números de la siguiente sucesión son cuadrados perfectos: 49, 4489,444889,...
Un problema de cálculo
Dada la función $f(x)=1/x$, considere un punto $P$ en la gráfica de la función (en el primer cuadrante). La tangente en $P$ forma un triángulo rectángulo con los ejes al intersecarlos. Calcular las coordenadas de $P$, para las cuales la hipotenusa de ese triángulo tiene longitud mínima/máxima.
Ensayos repetidos con un tetraedro
Los vértices de un tetraedro están etiquetados con los números del 1 al 4. Considere el siguiente experimento aleatorio: se lanza el tetraedro y se registra el número del vértice superior. Calcular la probabilidad de que al lanzar el tetraedro 5 veces, la suma de los números de los vértices superiores obtenidos en los lanzamientos sea 12.