Problemas

Esta es nuestra colección de problemas. Los hemos clasificados por tema, dificultad y tipo de concurso. No dudes en escribir comentarios con tus soluciones o con cualquier duda sobre el problema.
También puedes compartirnos alguno de tus problemas favoritos:
Problema

Alturas de un isósceles

Enviado por jmd el 9 de Marzo de 2009 - 18:22.

En un triángulo acutángulo $ ABC $, las alturas de $ B $ y $ C $ respecto a las bases $ CA $ y $ AB $, respectivamente, se intersectan en el punto $ S $. Sean $ M $ en $ AB $ y $ N $ en $ CA $ los pies de esas alturas. Demostrar que $AB=CA$ si y sólo si el ángulo $ MSB $ mide el doble que el ángulo $ CBN $.

Problema

Juego de las 3 cartas

Enviado por jmd el 7 de Marzo de 2009 - 10:01.

Tres jugadores, $A, B, C$, utilizan tres cartas para jugar. Es cada una de ellas está escrito un número entero positivo y todos son diferentes, digamos $p, q, r$ en orden creciente.

Problema

Factores de 39

Enviado por jmd el 7 de Marzo de 2009 - 08:28.

Si $m, n$ son enteros positivos que cumplen la ecuación $m^n+m^{n+1}+m^{n+2}=39$ encuentra sus valores (todos los posibles).

Problema

Teorema de Napoleón (interior)

Enviado por jmd el 27 de Febrero de 2009 - 10:18.

Si en un triángulo $ ABC $ se construyen triángulos equiláteros interiores sobre sus lados, entonces los centros $X, Y, Z$ de dichos triángulos equiláteros determinan un triángulo equilátero $ XYZ $, conocido como triángulo de Napoleón interior. (Demostrarlo.)

Problema

Teorema de Napoleón (exterior)

Enviado por jmd el 27 de Febrero de 2009 - 10:10.

Si en un triángulo $ ABC $ se construyen triángulos equiláteros exteriores sobre sus lados, entonces los centros $X, Y, Z$ de dichos triángulos equiláteros determinan un triángulo equilátero $ XYZ $, conocido como triángulo de Napoleón exterior. (Demostrarlo.)
 

Problema

Ladrones de la tercera edad

Enviado por jmd el 27 de Febrero de 2009 - 08:23.

"El Carrizos" y "el Mayel", dos ladrones de la tercera edad, han robado un collar circular con $2m$ cuentas de oro y $2n$ cuentas de plata, dispuestas en un orden desconocido.

Problema

Dividir un segmento...

Enviado por jmd el 25 de Febrero de 2009 - 16:05.

Dividir un segmento $AC$ en la razón $3/2$ (en razón de 3 a 2), internamente por un punto B y externamente por un punto $G$.

Problema

Congruentes, por tanto...

Enviado por jmd el 23 de Febrero de 2009 - 22:13.

En la figura, los triángulos $ ABC $ y $DEF$ son congruentes, con $BC=EF$. ¿Cuánto mide el ángulo EGC?

Problema

Ida y vuelta

Enviado por jmd el 23 de Febrero de 2009 - 12:27.

Una persona camina de $A$ a $B$ a 4 km/h y de regreso de $B$ a $A$ camina a 6 km/h. Si tarda 45 minutos en la caminata de ida y vuelta ¿cuál es la distancia entre A y B?

Problema

Demostrar isósceles

Enviado por jmd el 23 de Febrero de 2009 - 12:24.

En el triángulo $ABC$, las alturas $CM$ y $BN$ se cortan en el punto $S$. Con los datos que se muestran en la figura, concluye que el triángulo es isósceles.

Problema

Quita y pon canicas.

Enviado por jesus el 20 de Febrero de 2009 - 16:29.

El siguiente juego de canicas involucra un sólo jugador. Se ponen muchas canicas en una caja.

Problema

Problema desargueano (parte 1)

Enviado por jmd el 18 de Febrero de 2009 - 22:40.

Si en un triángulo $ABC$ se toman los puntos $P$ en $BC$, $Q$ en $CA$ y$ $R en $AB$, de tal manera que las rectas $QR, RP, PQ$ cortan a los lados $BC, CA, AB$ en los puntos $P', Q', R'$, res

Problema

P1 OMM 2004 - Problema 1

Enviado por jose el 13 de Febrero de 2009 - 01:39.

Encuentra todos los números primos $p,q, r$ con $p$<$ q$ <$r$ , que cumplan
con $25pq+ r= 2004$ y que $pqr+ 1 $ sea un cuadrado perfecto

Problema

Ternas Pitagóricas (parte 3)

Enviado por jmd el 12 de Febrero de 2009 - 21:39.

Demostrar que en cualquier terna pitagórica primitiva $a^2+b^2=c^2$, exactamente dos de los números $a, b, c$ son impares. (Primitiva significa sin divisores en común.)

Problema

Ternas Pitagóricas (parte 2)

Enviado por jmd el 12 de Febrero de 2009 - 21:17.

Demostrar que en cualquier terna pitagórica $a^2+b^2=c^2$,  al menos uno de los números a, b, c es divisible entre 5.

Problema

Geometría con origami

Enviado por jmd el 12 de Febrero de 2009 - 07:19.

Una hoja de papel en forma rectangular $ABCD$ se dobla a lo largo de la línea $PQ$ de manera que el vértice $A$ quede en el lugar del punto $A’$ y el vértice $B$ en el lugar del punto $B’$. Al medir los segmentos $AP, BQ, DP$, se tiene que miden $26 cm, 5 cm$ y $10 cm$, respectivamente.

¿Cuál es el área del la hoja de papel?

Problema

Problema 6, ONMAS 5 (modificado)

Enviado por jmd el 12 de Febrero de 2009 - 06:59.

En un rectángulo de base 10 y altura 8, se ha inscrito un paralelogramo de tal manera que en las esquinas del rectángulo se forman triángulos de catetos 4 y 7 y 3 y 4. Encuentra la distancia entre los lados opuestos del paralelogramo inscrito en el rectángulo.

 

Problema

Problema 6 OMM 2003

Enviado por jose el 7 de Febrero de 2009 - 01:12.

Dado un entero $n$ un cambio sensato consiste en sustituir $n$ por $2n+1$ ó $3n+2$. Dos enteros positivos $a$ y $b$ se llaman compatibles si existe un entero que se puede obtener haciendo uno o más cambios sensatos, tanto a partir de $a$,  como a partir de $b$. Encuentra todos los enteros positivos compatibles con $2003$ menores que $2003$.

 

Problema

Problema 4 OMM 2003

Enviado por jose el 7 de Febrero de 2009 - 00:52.

Sea $ABCD$ un trapecio con $AB$ paralelo a $DC$. Se toman puntos $P$ y $Q$ sobre $AB$ y $CD$ respectivamente, tales que $\frac{AP}{PB}= \frac{DQ}{QC}$. Sea $M$ la intersección de $AQ$ con $DP$ y sea $N$ la intersección de $PC$ con $QB$. Pruebe que la longitud de $MN$ depende sólo de las longitudes de $AB$ y $DC$ y calcula su valor.

 

Problema

Ciencias blandas (Soft science)

Enviado por jmd el 5 de Febrero de 2009 - 20:51.

Tres licenciados en ciencias blandas han tenido que entrar al mercado laboral con sus habilidades preuniversitarias. Con la siguiente información decide en qué trabaja cada uno.