Problemas
También puedes compartirnos alguno de tus problemas favoritos:
El problema elemental más difícil jamás inventado
Encontrar una solución al siguiente acertijo, en el que las distintas letras representan los dígitos 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Una solución consiste en una correspondencia biunívoca entre letras y dígitos que sea compatible con la suma.
Problema del concurso de primavera español
La edad del padre de Nacho es cuatro veces la edad de éste. Dentro de cuatro años será sólo el triple. ¿Cuántos años desde ahora deben pasar para que sea sólo el doble?
- A) 16
- B) 18
- C) 20
- D) 24
- E) 3
Diferencia de cuadrados constante
Dados dos puntos A y B, determinar el lugar geométrico de los puntos P en el plano tal que:
$PA^2 - PB^2 = constante$
Simediana, línea media y pies de alturas
Consideremos un triángulo cualquiera ABC. Llamemos P y Q los pies de las alturas trazadas desde B y C respectivamente. Consideremos también $\mathcal{M} $ la línea media opuesta al vértice C; y consideremos $\mathcal{L}$ la simediana trazada desde B. Demuestra que las líneas PQ, $\mathcal{M}$ y $\mathcal{L}$ concurren.
Problema 3 de la OMM 2008
Considera un tablero de ajedrez. Los números del 1 al 64 se escriben en las casillas del tablero como en la figura:
Problema 2 de la OMM 2008
Considera una circunferencia $\Gamma$, un punto A fuera de $ \Gamma $ y las tangentes AB, AC a $ \Gamma $ desde A, con B y C los puntos de tangencia. Sea P un punto sobre el segmento AB, distinto de A y de B. Considera el punto Q sobre el segmento AC tal que PQ es tangente a $ \Gamma$, y a los puntos R y S que están sobre las rectas AB y AC, respectivamente, de manera que RS es paralela a PQ y tangente a $\Gamma$. Muestra que el producto de las áreas de los triángulos APQ y ARS no depende de la elección del punto P.
Muestra que el producto de las áreas de los triángulos APQ y ARS no depende de la elección del punto P.
Problema 1 de la OMM 2008
Sean $1=d_1 < d_2 < d_3 \cdots < d_k = n$ los divisores del entero positivo $ n $. Encuentra todos los números $ n $ tales que $n = d_2 ^ 2 + d_3^3$.
Las retas de ajedrez
Ana, Beto y Carlos decidieron jugar unas retas de ajedrez: al terminar una partida, el que estaba esperando entraba a jugar contra el ganador. Empezaron las retas con una partida entre Ana y Beto. Al final de varias partidas, Ana acumuló 17 victorias; Beto, 14 y Carlos no contó las suyas.
¿En cuántas partidas se enfrentaron Ana y Beto?
El multiplo de 2000 más pequeño que es suma de los primeros cuadrados
Encuentra el número entero $ n > 0 $ más pequeño que satisface que 2000 divide a
$$ 1^2 + 2^2 + \cdots + n^2 $$.
Elige los signos en la suma
¿Existirá alguna manera de elegir los símbolos $ + $ y $ - $ para que se satisfaga la igualdad $ \pm 1 \pm 2 \pm \cdots \pm 100 = 13^2 $ ?
Trisección de un segmento y triángulos equilateros
Sea $ ABC $ un triángulo equilatero, $ M $ el punto medio de $ BC $. Considera $ P $ y $ Q $ los dos puntos fuera del triángulo $ ABC $ tales que los triángulos $ BMP $ y $ MQC $ son equilateros. Llamemos $ S $ y $ T $ a los puntos de intersección de $ AP $ y $ AQ $ con el segmento $ BC $ respectivamente. Demuestra que $ S $ y $ T $ trisectan al segmento $ BC $.
Un ejercicio clásico de potencias
En la siguiente figura, desde un vértice del cuadrado está trazada una tangente. El lado del cuadrado mide 1 y la longitud de la tangente es 2. Encuentra el radio de la circunferencia.
Cómo rellenar un rectángulo con fichas
Para cada par de números naturales $a,b>1$ definamos $P_{a \times b}$ como el polígono que se forma a partir de un rectángulo de $a \times b$ removiendo dos cuadrados de $1 \times 1$ en dos esquinas opuestas . Demuestra que $P_{a \times b}$ se puede cubrir con rectángulitos de $1 \times 2$ sin que se traslapen si y sólo si $ a $ y $ b $ tienen distinta paridad.
Problema de suma con raices
Demuestra la siguiente igualdad
$$ \frac{1}{\sqrt{1} + \sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \cdots + \frac{1}{\sqrt{2007}+\sqrt{2008}} = 2\sqrt{502}-1 $$
El abuelo y la niña generalizado
Kika tiene $ n $ objetos. Un día llega de la escuela y… ¡Abuelo! ¡Abuelo! Perdí $ x $. Y el abuelo la consuela: piensa en que si hubieses encontrado $ x $, ahora tendrías $ y $ veces los que ahora tienes. Encontrar todas las parejas $(x, n)$ en términos de $ y $, para que el diálogo entre la niña y el abuelo tenga sentido en enteros positivos ($x, y, n$ enteros positivos).
(El problema original dice: perdí 2. Y el abuelo dice: si hubieses encontrado 2 ahora tendrías 5 veces los que ahora tienes.)
Construir un cuadrado con tres puntos dados
Se tienen dados, un vértice V de un cuadrado y dos puntos A y B. Los puntos A y B se encuentran sobre dos lados (o prolongaciones de los lados) del cuadrado antes mencionado. Estos dos lados son precisamente los opuestos al vértice V, es decir, los que no lo contienen.
Usando regla y compás, construye el cuadrado.
— Problema sugerido por Hugo Espinosa Pérez 10/Oct/2008 15:07
En sucesión modular busca el ciclo
Considere la sucesión $1, 9, 8, 3, 4, 3, \ldots$ en la cual $a_{n+4}$ es el dígito de la unidades de $a_n + a_{n+3},$ para $ n $ entero positivo. Demuestre que $a_{1985}^2 +a_{1986}^2+ \ldots + a_{2000}^2$ es un múltiplo de $ 2 $.
¿Cuál es la invariante?
En las siguientes cuadriculas, se dice que dos cuadrados son adyacentes, si comparten un lado. Considere la siguiente operación T: se eligen cualesquiera dos números en cuadrados adyacentes y a ambos se les suma el mismo entero. ¿Se puede transformar el tablero de la izquierda en el de la derecha mediante iteraciones de T?.
Un problema de igualdad de areas
Sean $ABCD$ un paralelogramo, $ E $ un punto sobre la recta $AB$, mas allá de $ B $, $ F $ un punto sobre la recta $AD$, mas allá de $ D $, y $ K $ el punto de intersección de las rectas $ED$ y $BF$. Demuestre que los cuadriláteros $ABKD$ y $CEKF$ tienen la misma área.
suma de divisores
Demuestre que hay una infinidad de enteros positivos $ n $ tales que la suma de los divisores positivos del número $2008^n-1$ es divisible entre $ n $.