Publicaciones Recientes
Problema 1, IMO 2010
Determine todas las funciones $f : \mathbb{R} \to \mathbb{R}$ tales que $$f(\lfloor x \rfloor y)= f(x) \lfloor f(y) \rfloor$$ para todos los números $x, y \in \mathbb{R}$. ($\lfloor z\rfloor$ denota el mayor entero que es menor o igual que $z$.)
Sentido de la estructura geométrica
Chicas Fresa en Palacio
Las chicas fresa andan en Palacio de Hierro (sólo les faltan los lentes para irse de vacaciones a Los Cabos):
K: "¿Ya vieron? ¡Qué looser! ¡Son piratas! Nada que ver conmigo, yo quiero unos Carrera, Champion como los de Lady Gaga".
IMO 2010: México lugar 33
Después de que el año pasado la delegación mexicana que acudió a la Olimpiada Internacional de Matemáticas (IMO por sus siglas en inglés) se derrumbó hasta el lugar 50, en la IMO 2010 obtuvo el lugar 33 como país (con una plata y tres bronces), regresando a un nivel satisfactorio. (En los últimos 10 años, los lugares de México en la IMO han sido: 33 (2010), 50, 37, 24, 31, 37, 41, 46, 46, 32(2000).
P6 OMM 2001. Cuatro axiomas para colección de monedas
Un coleccionista de monedas raras tiene monedas de denominaciones $1, 2, 3, \ldots, n$ (tiene muchas monedas de cada denominación). Desea poner algunas de sus monedas en las cajas de manera que se cumplan las siguientes condiciones:
P5 OMM 2001. Probar isósceles... ¿cómo se prueba isósceles?
Sea $ABC$ un triángulo tal que $AB< AC$ y el ángulo $BAC$ es el doble del ángulo $BCA$. Sobre el lado $AC$ se toma un punto $D$ tal que $CD = AB$. Por el punto $B$ se traza una recta $l$ paralela a $AC$. La bisectriz exterior del ángulo en $A$ intersecta a $l$ en el punto $M$, y la paralela a $AB$ por $C$ intersecta a $l$ en el punto $N$. Prueba que $MD = DN$.
P4 OMM 2001. Lista de residuos cuadráticos
Dados dos enteros positivos $n$ y $a$, se forma una lista de 2001 números como sigue:
- el primer número es $a$;
- a partir del segundo, cada número es el residuo que se obtiene al dividir al cuadrado del anterior entre $n$.
A los números de la lista se les ponen los signos $+$ y $-$, alternadamente
empezando con $+$. Los números con signo así obtenidos se suman, y a esa suma se le llama suma final para $n$ y $a$.
¿Para qué enteros $n \geq 5$ existe alguna $a$ tal que $2 \leq a \leq n/2$, y la suma final para $n$ y $a$ es positiva?
P3 OMM 2001. Segmentos congruentes --sobre diagonal de un cíclico
En un cuadrilátero $ABCD$, inscrito en una circunferencia, llamemos $P$ al punto de intersección de las diagonales $AC$ y $BD$, y sea $M$ el punto medio de $CD$. La circunferencia que pasa por $P$ y que es tangente a $CD$ en $M$ corta a $BD$ y $AC$ en los puntos $Q$ y $R$ respectivamente. Se toma un punto $S$ sobre el segmento $BD$ de tal manera que $BS = DQ$. Por $S$ se traza una paralela a $AB$ que corta a $AC$ en un punto $T$. Prueba que $AT = RC$.
P2 OMM 2001. Un problema pelotudo
Se tienen algunas pelotas de colores (son por lo menos tres colores), y por lo menos tres cajas. Las pelotas se ponen en las cajas de manera que no quede vacía ninguna caja y que no haya tres pelotas de colores distintos que estén en tres cajas distintas. Prueba que hay una caja con todas las pelotas que están fuera de ella son del mismo color.
P1 OMM 2001. Múltiplos de 3 y 7 con dígitos 3 o 7
Encuentra todos los números de 7 dígitos que son múltiplos de 3 y de 7,
y cada uno de cuyos dígitos es 3 o 7.