Problemas
También puedes compartirnos alguno de tus problemas favoritos:
P6 OMM 2004. Cambios de dirección en cuadrícula 2004X2004
¿Cuál es el mayor número posible de cambios de dirección en un recorrido sobre las líneas de una cuadrícula de $2004\times 2004$ casillas, si el recorrido no pasa dos veces por el mismo lugar?
P5 OMM 2004. Dos circunferencias
Sean $\alpha$ y $\beta$ dos circunferencias tales que el centro $O$ de $\beta$ está sobre $\alpha$. Sean $C$ y $D$ los dos puntos de intersección de las circunferencias. Se toman un punto $A$ sobre $\alpha$ y un punto $B$ sobre $\beta$ tales que $AC$ es tangente a $\beta$ en $C$ y $BC$ es tangente a $\alpha$ en el mismo punto $C$. El segmento $AB$ corta de nuevo a $\beta$ en $E$ y ese mismo segmento corta de nuevo a $\alpha$ en $F$. La recta $CE$ vuelve a cortar a $\alpha$ en $G$ y la recta $CF$ corta a la recta $GD$ en $H$. Prueba que el punto de intersección de $GO$ y $EH$ es el centro de la circunferencia circunscrita al triángulo $DEF$.
P4 OMM 2004. Número de equipos en un torneo
Al final de un torneo de futbol en el que cada par de equipos jugaron entre si exactamente una vez y donde no hubo empates, se observó que para cualesquiera tres equipos $A, B, C,$ si $A$ le ganó a $B$ y $B$ le ganó a $C$ entonces $A$ le ganó a $C$. Cada equipo calculó la diferencia (positiva) entre el número de partidos que ganó y el número de partidos que perdió. La suma de todas estas diferencias resultó ser 5000. ¿Cuántos equipos participaron en el torneo? Encuentra todas las respuestas posibles.
P3 OMM 2004. Configuración con incírculo y punto medio
Sean $Z,Y$ los puntos de tangencia del incírculo del triángulo $ABC$ con los lados $AB,CA,$ respectivamente. La paralela a $YZ$ por el punto medio $M$ del lado $BC,$ corta a $CA$ en $N$. Sea $L$ el punto sobre $CA$ tal que $NL = AB$ (y $L$ del mismo lado de $N$ que $A$). La recta $ML$ corta a $AB$ en $K$. Muestra que $KA = NC$.
P2 OMM 2004. Diferencia no menor que el centésimo del producto
¿Cuál es la mayor cantidad de enteros positivos que se pueden encontrar de
manera que cualesquiera dos de ellos $a$ y $b$ (con a $a\neq b$) cumplan $|a-b|\geq \frac{ab}{100}$?
P6 OMM 2002. Doblez en un rectángulo
Sea $ABCD$ un cuadrilátero con $AD$ paralelo a $BC$, los ángulos en $A$ y $B$ rectos y tal que el ángulo $CMD$ es recto, donde $M$ es el punto medio de $AB$. Sean $K$ el pie de la perpendicular a $CD$ que pasa por $M$, $P$ el punto de intersección de $AK$ con $BD$ y $Q$ el punto de intersección de $BK$ con $AC$. Demuestra que el ángulo $AKB$ es recto y que $$\frac{KP}{PA} + \frac{KQ}{QB} = 1$$
P5 OMM 2002. Ternas compatibles
Tres enteros distintos forman una terna compatible si alguno de ellos, digamos $ n $, cumple que cada uno de los otros dos es, o bien divisor, o bien múltiplo de $ n $. Para cada terna compatible de números entre 1 y 2002 se calcula la suma de los tres números de la terna. ¿Cuál es la mayor suma obtenida? ¿Cuáles son las ternas en las que se obtiene la suma máxima?
P4 OMM 2002. Hileras de dominó --con suma impar
Una ficha de dominó tiene dos números (no necesariamente diferentes) entre 0 y 6. Las fichas se pueden voltear, es decir, $[4,5]$ es la misma ficha que $[5,4]$. Se quiere formar una hilera de fichas de dominó distintas, de manera que, en cada momento de la construcción de la hilera, la suma de todos los números de las fichas puestas hasta ese momento sea impar. Las fichas se pueden agregar de la manera usual a ambos extremos de la hilera, es decir, de manera que en cualesquiera dos fichas consecutivas aparezca el mismo número en los extremos que se juntan.
P3 OMM 2002. Residuos cuadráticos (módulo 4)
Sean $n$ un entero positivo. ¿Tiene $n^2$ más divisores positivos de la forma $4k+1$ o de la forma $4k-1$?
P2 OMM 2002. Circuncírculo de la mitad de un paralelogramo
Sean $ABCD$ un paralelogramo y $\kappa$ la circunferencia circunscrita al triángulo $ABD$. Sean $E$ y $F$ las intersecciones de $\kappa$ con los lados (o sus prolongaciones) $BC$ y $CD$, respectivamente ($E$ distinto de $B$ y $F$ distinto de $D$). Demuestra que el circuncentro del triángulo $CEF$ está sobre $\kappa$.
P1 OMM 2002. Operaciones sobre cuadrícula 32X32
En una cuadrícula de $32\times32$ se escriben los números del 1 al 1024 de izquierda a derecha: los números del 1 al 32 en el primer renglón, los del 33 al 64 en el segundo, etc. La cuadrícula se divide en cuatro cuadrículas de $16\times16$ que se cambian de lugar entre ellas como sigue:
Problema 6, IMO 2010
Sea $a_1, a_2, a_3, \ldots$ una sucesión de números reales positivos. Se tiene que para algún entero positivo $s$,
$$a_n = \textrm{max}\{a_k + a_{n-k} \textrm{ tal que } 1 \leq k \leq n - 1\}$$
para todo $n > s$. Demuestre que existen enteros positivos $\ell$ y $N$, con $\ell \leq s$, tales que $a_n = a_\ell + a_{n-\ell}$ para todo $n \geq N$.
Problema 3, IMO 2010
Sea $\mathbb{N}$ el conjunto de los enteros positivos. Determine todas las funciones $g : \mathbb{N} \to \mathbb{N}$ tales que $$\left( g(m) + n\right) \left(m + g(n) \right) $$
es un cuadrado perfecto para todo $m, n \in \mathbb{N}$.
Problema 5, IMO 2010
En cada una de las seis cajas $B_1,B_2,B_3,B_4,B_5,B_6$ hay inicialmente sólo una moneda. Se permiten dos tipos de operaciones:
- Tipo 1: Elegir una caja no vacía $B_j$ , con $1 \leq j \leq 5$. Retirar una moneda de $B_j$ y añadir dos monedas a $B_{j+1}$.
- Tipo 2: Elegir una caja no vacía $B_k$, con $1 \leq k \leq 4$. Retirar una moneda de $B_k$ e intercambiar los contenidos de las cajas (posiblemente vacías) $B_{k+1}$ y $B_{k+2}$.
Determine si existe una sucesión finita de estas operaciones que deja a las cajas $B_1,B_2,B_3,B_4,B_5$ vacías y a la caja $B_6$ con exactamente $2010^{2010^{2010}}$ monedas. (Observe que $a^{b^c} = a^{(b^c)}$.)
Problema 2, IMO 2010
Sea $ABC$ un triángulo, $I$ su incentro y $\Gamma$ su circunferencia circunscrita. La recta $AI$ corta de nuevo a $\Gamma$ en $D$. Sean $E$ un punto en el arco $\widehat{BDC}$ y $F$ un punto en el lado $BC$ tales que
$$\angle BAF = \angle CAE < \frac{1}{2} \angle BAC.$$
Sea $G$ el punto medio del segmento $IF$. Demuestre que las rectas $DG$ y $EI$ se cortan sobre $\Gamma$.
Problema 4, IMO 2010
Sea $P$ un punto en el interior del triángulo $ABC$ con circunferencia circunscrita $\Gamma$. Las rectas $AP,BP,CP$ cortan otra vez a $\Gamma$ en los puntos $K,L,M$, respectivamente. La recta tangente a $\Gamma$ en $C$ corta a la recta $AB$ en $S$. Demostrar que si $SC=SP$ entonces $MK=ML$.
Problema 1, IMO 2010
Determine todas las funciones $f : \mathbb{R} \to \mathbb{R}$ tales que $$f(\lfloor x \rfloor y)= f(x) \lfloor f(y) \rfloor$$ para todos los números $x, y \in \mathbb{R}$. ($\lfloor z\rfloor$ denota el mayor entero que es menor o igual que $z$.)
Chicas Fresa en Palacio
Las chicas fresa andan en Palacio de Hierro (sólo les faltan los lentes para irse de vacaciones a Los Cabos):
K: "¿Ya vieron? ¡Qué looser! ¡Son piratas! Nada que ver conmigo, yo quiero unos Carrera, Champion como los de Lady Gaga".
P6 OMM 2001. Cuatro axiomas para colección de monedas
Un coleccionista de monedas raras tiene monedas de denominaciones $1, 2, 3, \ldots, n$ (tiene muchas monedas de cada denominación). Desea poner algunas de sus monedas en las cajas de manera que se cumplan las siguientes condiciones:
P5 OMM 2001. Probar isósceles... ¿cómo se prueba isósceles?
Sea $ABC$ un triángulo tal que $AB< AC$ y el ángulo $BAC$ es el doble del ángulo $BCA$. Sobre el lado $AC$ se toma un punto $D$ tal que $CD = AB$. Por el punto $B$ se traza una recta $l$ paralela a $AC$. La bisectriz exterior del ángulo en $A$ intersecta a $l$ en el punto $M$, y la paralela a $AB$ por $C$ intersecta a $l$ en el punto $N$. Prueba que $MD = DN$.