Problemas

Esta es nuestra colección de problemas. Los hemos clasificados por tema, dificultad y tipo de concurso. No dudes en escribir comentarios con tus soluciones o con cualquier duda sobre el problema.
También puedes compartirnos alguno de tus problemas favoritos:
Problema

Polinomios simétricos en tres variables: resultado fundamental

Enviado por jmd el 1 de Enero de 2010 - 10:47.

Sea $ n $ un entero no negativo y $x,y,z$ números reales.  Con la notación usual, defínanse los polinomios simétricos elementales en tres variables como $\sigma_1=x+y+z,~\sigma_2=xy+yz+zx, ~\sigma_3=xyz$  y $S_n=x^n+y^n+z^n$.

Demostrar:

a) $S_n=\sigma_1\cdot S_{n-1}-\sigma_2\cdot S_{n-2}+\sigma_3\cdot S_{n-3}$, para $n\geq3$

Problema

Polinomios simétricos en dos variables: resultado fundamental

Enviado por jmd el 1 de Enero de 2010 - 10:26.

Sea $ n $ un entero no negativo y $a,b$ números reales.

a)Demostrar la identidad $$a^n+b^n=(a+b)(a^{n-1}+b^{n-1})-ab(a^{n-2}+b^{n-2})$$

Problema

Ejercicios sobre inducción matemática

Enviado por jmd el 28 de Diciembre de 2009 - 21:37.

El n-ésimo número triangular $T_{n}$ se define como la suma de los primeros $ n $ enteros.

Problema

¿Tantos? ¡Qué desorden!

Enviado por jmd el 28 de Diciembre de 2009 - 09:39.

 

Problema

¿Quién tiene más?

Enviado por jmd el 28 de Diciembre de 2009 - 09:20.

Dos vecinos juegan al "quién tiene más" (en varilla para la construcción):

A: Yo tengo 40 y tú 30.

B: Sí, pero las mías miden 4 metros más que las tuyas.

Problema

Modelación recursiva

Enviado por jmd el 27 de Diciembre de 2009 - 09:26.

¿De cuántas formas se puede formar un número con los dígitos 1 y 2 (y ningún otro) de tal manera que sus dígitos sumen n? 

Problema

Dos números

Enviado por jmd el 8 de Diciembre de 2009 - 12:56.

Encontrar dos números tales que su suma, su producto y la diferencia de sus cuadrados son iguales entre sí.

Problema

Impares consecutivos

Enviado por jmd el 4 de Diciembre de 2009 - 11:31.

Dos impares consecutivos son tales que el doble del menor más el recíproco del mayor es 71/7. Encontrar esos números.

Problema

Incentivo paternal

Enviado por jmd el 4 de Diciembre de 2009 - 10:58.

El padre quiere que su hija sea campeona en matemáticas de concurso. Le dice:"Por cada problema que resuelvas te daré 70 pesos y por cada uno que no resuelvas me darás 50 pesos." Después de intentar los n problemas de la lista que su papá le dio, la niña ha ganado 550 pesos. ¿Cuáles son los posibles valores de n?

Problema

Comité deshonesto

Enviado por jmd el 1 de Diciembre de 2009 - 10:43.

El dinero (no declarado) de la colecta se va a repartir en partes iguales entre los miembros del comité (pro-viaje de estudios). Si fueran 3 miembros más les tocaría 25 pesos menos, y si fueran 2 menos les tocaría 25 pesos más. ¿Cuántos miembros son y cuánto se repartieron?

Problema

Múltiplos de 11

Enviado por jmd el 1 de Diciembre de 2009 - 10:18.


Encontrar todos los números de tres cifras múltiplos de 11 , y tales que la suma de sus dígitos es 10, y la diferencia entre el número y el que resulta al invertir sus dígitos es 297.

Problema

Cuerdas y concurrencia

Enviado por jmd el 18 de Noviembre de 2009 - 10:21.

Sean PQ, RS  y TU cuerdas de una circunferencia tales que PQ=RS=TU, y éstas no se intersectan dentro de la circunferencia. UP corta a QR en A, QR corta a ST en B y ST corta a UP en C. Sean L, M y N los puntos medios de PQ, RS y TU respectivamente. Demostrar que AL, BM y CN son concurrentes.

Problema

Acertijo lógico con tres variables dicotómicas

Enviado por jmd el 15 de Noviembre de 2009 - 17:09.

El exitoso empresario X, rico de nacimiento, quiere contratar los servicios de un guardaespaldas para proteger su persona de la delincuencia organizada. Para ello habla con el director de la agencia Z, especializada en ese tipo de contrataciones.

Problema

XXIIIOMM Problema 6

Enviado por jmd el 11 de Noviembre de 2009 - 11:17.

En una fiesta con n personas se sabe que de entre cualesquiera 4 personas, hay 3 de las 4 que se conocen entre sí o hay 3 que no se conocen entre sí. Muestra que las n personas se pueden separar en 2 salones de manera que en un salón todos se conocen entre sí y en el otro salón no hay dos personas que se conozcan entre sí.

Problema

XXIIIOMM Problema 5

Enviado por jmd el 11 de Noviembre de 2009 - 11:13.

Considera un triángulo ABC y un punto M sobre el lado BC. Sea P la intersección de las perpendiculares a AB por M y a BC por B, y sea Q la intersección de las perpendiculares a AC por M y a BC por C. Muestra que PQ es perpendicular a AM si y sólo si M es punto medio de BC.

Problema

XXIIIOMM Problema 4

Enviado por jmd el 11 de Noviembre de 2009 - 11:03.

Sea $n>1$ un entero impar y sean $a_1,a_2,\ldots,a_n$ números reales distintos. Sea $ M $ el mayor de estos números y sea $m$ el menor de ellos. Muestra que es posible escoger los signos de la expresión $s=\pm {a_1} \pm {a_2}\pm \ldots \pm {a_n}$ de manera que $m<s<M$.

Problema

XXIIIOMM Problema 3

Enviado por jmd el 10 de Noviembre de 2009 - 13:52.

Sean $a,b,c$ números reales positivos tales que $abc=1$. Muestra que
$ \frac {a^3}{a^3+2} + \frac {b^3}{b^3+2} + \frac {c^3}{c^3+2}\geq 1$ y que $ \frac {1}{a^3+2} + \frac {1}{b^3+2} + \frac {1}{c^3+2} \leq 1$

Problema

XXIIIOMM Problema 2

Enviado por jmd el 10 de Noviembre de 2009 - 13:38.

En cajas marcadas con los números  0,1,2,3,... se van a colocar todos los enteros positivos de acuerdo con las siguientes reglas:

Problema

XXIIIOMM Problema 1

Enviado por jmd el 10 de Noviembre de 2009 - 13:16.

Sean ABC un triángulo y AD la altura sobre el lado BC. Tomando a D como centro y a AD como radio, se traza una circunferencia que corta a la recta AB en P, y corta a la recta AC en Q. Muestra que el triángulo AQP es semejante al triángulo ABC.

 

Problema

Un libro de regalo

Enviado por jmd el 4 de Noviembre de 2009 - 19:23.

Fui a la librería y me gustó un libro (Cómo ser feliz en 7 lecciones). Compré varios ejemplares para regalar en Navidad a mis amistades. Por eso la señorita me hizo un descuento de 10 pesos por cada copia. Pagué 1200 pesos. Sin ese descuento, con los 1200 hubiera comprado 4 libros menos.