Problemas
También puedes compartirnos alguno de tus problemas favoritos:
Polinomios simétricos en tres variables: resultado fundamental
Sea $ n $ un entero no negativo y $x,y,z$ números reales. Con la notación usual, defínanse los polinomios simétricos elementales en tres variables como $\sigma_1=x+y+z,~\sigma_2=xy+yz+zx, ~\sigma_3=xyz$ y $S_n=x^n+y^n+z^n$.
Demostrar:
a) $S_n=\sigma_1\cdot S_{n-1}-\sigma_2\cdot S_{n-2}+\sigma_3\cdot S_{n-3}$, para $n\geq3$
Polinomios simétricos en dos variables: resultado fundamental
Sea $ n $ un entero no negativo y $a,b$ números reales.
a)Demostrar la identidad $$a^n+b^n=(a+b)(a^{n-1}+b^{n-1})-ab(a^{n-2}+b^{n-2})$$
Ejercicios sobre inducción matemática
El n-ésimo número triangular $T_{n}$ se define como la suma de los primeros $ n $ enteros.
¿Quién tiene más?
Dos vecinos juegan al "quién tiene más" (en varilla para la construcción):
A: Yo tengo 40 y tú 30.
B: Sí, pero las mías miden 4 metros más que las tuyas.
Modelación recursiva
¿De cuántas formas se puede formar un número con los dígitos 1 y 2 (y ningún otro) de tal manera que sus dígitos sumen n?
Dos números
Encontrar dos números tales que su suma, su producto y la diferencia de sus cuadrados son iguales entre sí.
Impares consecutivos
Dos impares consecutivos son tales que el doble del menor más el recíproco del mayor es 71/7. Encontrar esos números.
Incentivo paternal
El padre quiere que su hija sea campeona en matemáticas de concurso. Le dice:"Por cada problema que resuelvas te daré 70 pesos y por cada uno que no resuelvas me darás 50 pesos." Después de intentar los n problemas de la lista que su papá le dio, la niña ha ganado 550 pesos. ¿Cuáles son los posibles valores de n?
Comité deshonesto
El dinero (no declarado) de la colecta se va a repartir en partes iguales entre los miembros del comité (pro-viaje de estudios). Si fueran 3 miembros más les tocaría 25 pesos menos, y si fueran 2 menos les tocaría 25 pesos más. ¿Cuántos miembros son y cuánto se repartieron?
Múltiplos de 11
Encontrar todos los números de tres cifras múltiplos de 11 , y tales que la suma de sus dígitos es 10, y la diferencia entre el número y el que resulta al invertir sus dígitos es 297.
Cuerdas y concurrencia
Sean PQ, RS y TU cuerdas de una circunferencia tales que PQ=RS=TU, y éstas no se intersectan dentro de la circunferencia. UP corta a QR en A, QR corta a ST en B y ST corta a UP en C. Sean L, M y N los puntos medios de PQ, RS y TU respectivamente. Demostrar que AL, BM y CN son concurrentes.
Acertijo lógico con tres variables dicotómicas
El exitoso empresario X, rico de nacimiento, quiere contratar los servicios de un guardaespaldas para proteger su persona de la delincuencia organizada. Para ello habla con el director de la agencia Z, especializada en ese tipo de contrataciones.
XXIIIOMM Problema 6
En una fiesta con n personas se sabe que de entre cualesquiera 4 personas, hay 3 de las 4 que se conocen entre sí o hay 3 que no se conocen entre sí. Muestra que las n personas se pueden separar en 2 salones de manera que en un salón todos se conocen entre sí y en el otro salón no hay dos personas que se conozcan entre sí.
XXIIIOMM Problema 5
Considera un triángulo ABC y un punto M sobre el lado BC. Sea P la intersección de las perpendiculares a AB por M y a BC por B, y sea Q la intersección de las perpendiculares a AC por M y a BC por C. Muestra que PQ es perpendicular a AM si y sólo si M es punto medio de BC.
XXIIIOMM Problema 4
Sea $n>1$ un entero impar y sean $a_1,a_2,\ldots,a_n$ números reales distintos. Sea $ M $ el mayor de estos números y sea $m$ el menor de ellos. Muestra que es posible escoger los signos de la expresión $s=\pm {a_1} \pm {a_2}\pm \ldots \pm {a_n}$ de manera que $m<s<M$.
XXIIIOMM Problema 3
Sean $a,b,c$ números reales positivos tales que $abc=1$. Muestra que
$ \frac {a^3}{a^3+2} + \frac {b^3}{b^3+2} + \frac {c^3}{c^3+2}\geq 1$ y que $ \frac {1}{a^3+2} + \frac {1}{b^3+2} + \frac {1}{c^3+2} \leq 1$
XXIIIOMM Problema 2
En cajas marcadas con los números 0,1,2,3,... se van a colocar todos los enteros positivos de acuerdo con las siguientes reglas:
XXIIIOMM Problema 1
Sean ABC un triángulo y AD la altura sobre el lado BC. Tomando a D como centro y a AD como radio, se traza una circunferencia que corta a la recta AB en P, y corta a la recta AC en Q. Muestra que el triángulo AQP es semejante al triángulo ABC.
Un libro de regalo
Fui a la librería y me gustó un libro (Cómo ser feliz en 7 lecciones). Compré varios ejemplares para regalar en Navidad a mis amistades. Por eso la señorita me hizo un descuento de 10 pesos por cada copia. Pagué 1200 pesos. Sin ese descuento, con los 1200 hubiera comprado 4 libros menos.