Problemas

Esta es nuestra colección de problemas. Los hemos clasificados por tema, dificultad y tipo de concurso. No dudes en escribir comentarios con tus soluciones o con cualquier duda sobre el problema.
También puedes compartirnos alguno de tus problemas favoritos:
Problema

Ejercicio 3.2

Enviado por jesus el 1 de Marzo de 2010 - 18:03.

Sea $\pi$ un plano proyectivo. Usa la definición 3.11(la definición de espacio proyectivo pero simplificada) para probar que:

P3'. Existe almenos tres líneas no concurrentes en $\pi$.

P4'. Exiten almenos tres líneas que pasan por cualquier punto en $\pi$.

Deduce que el principio de dualidad es válido en un plano proyectivo.

Problema

Ejercicio 3.1.7

Enviado por jesus el 1 de Marzo de 2010 - 17:57.

Demuestra que para cuales quiera $S_r$ y $S_n$ espacios proyectivos, el espacio $S_r \oplus S_n $ está formado por aquellos (y sólo aquellos) puntos que se encuentran sobre un línea que une un punto de $S_r$ y uno de $S_n$

Problema

Magia con matemáticas

Enviado por DragonforceX el 1 de Marzo de 2010 - 15:35.

Sea $ K $ un entero positivo de $ n $ cifras y $ S $ la suma de todas las cifras de $ K $. Demuestra que $ K $ menos $ S $ es múltiplo de 9 para todo $ n $, con $ n $ mayor o igual a 2.

Problema

Ejercicio 3.1.5

Enviado por jesus el 25 de Febrero de 2010 - 11:41.

Sean $\ell$, $m$ y $n$ tres líneas mutuamente oblicuas (i.e, no dos de ellas se intersectan) en un espacio proyectivo $S_3$ de dimensión 3. Demuestre que por cada punto de $\ell$ pasa una única línea $r$ que intersecta a $m$ y $n$.

Esas líneas son llamadas $(\ell, m, n)$-transversales. El conjunto de $\mathcal{R}$ de todas las $(\ell, m, n)$-transversales es llamado un regulus, y algunas veces es denotado por $\mathcal{R}(\ell, m, n)$. Demuestre que no hay dos $(\ell, m , n)$-transversales distintas que se intersecten.

Problema

Ejercicio 3.1.2

Enviado por jesus el 25 de Febrero de 2010 - 01:46.

Dos planos en un espacio proyectivo de dimensión 4, $S_4$, se dice que son oblicuos (skew en inglés) si se intersectan en un sólo punto. Sean $\pi$, $\alpha$ y $\beta$ tres planos mutuamente oblicuos en $S_4$. Demuestra que existe un único plano de $S_4$ que intesecta a cada uno de los planos $\pi$, $\alpha$ y $\beta$ en una recta.

Problema

Ejercicio 2.1.4

Enviado por jesus el 25 de Febrero de 2010 - 00:40.
Problema

Ejercicio 2.1.2

Enviado por jesus el 25 de Febrero de 2010 - 00:13.

Sea $ABCD$ un cuadrángulo en el plano Euclideano extendido (PEE). Sea $X = AB \cap CD$, $Y= BD \cap CA$, $Z = AD\cap BC$. El triángulo $XYZ$ es llamado triángulo diagonal.

Dibuja la configuración dual (el cuadrilátero y su trilátero diagonal).

Problema

Triplos

Enviado por jmd el 24 de Febrero de 2010 - 07:30.

Sea n un número entero positivo de 5 cifras. Demostrar que si n se escribe con exactamente los mismos dígitos que su triplo entonces n es múltiplo de 9. (Ejemplo: el triplo de 12375 es 37125, y 12375=9x1375.)


 

Problema

El candidato llegó al ejido (cargado de despensas)

Enviado por jmd el 16 de Febrero de 2010 - 18:34.

Problema

Más con menos (rendimientos decrecientes del trabajo en equipo)

Enviado por jmd el 13 de Febrero de 2010 - 19:56.

En un equipo de trabajo de 20 desarrolladores de software educativo, la producción es de 30 unidades didácticas al año por cada integrante. Un estudio ha estimado que el rendimiento de cada miembro disminuiría en 1 unidad cada vez que se añadiera un nuevo miembro al equipo.

Problema

Un word problem en contexto mexicano

Enviado por jmd el 10 de Febrero de 2010 - 08:05.

Problema

Don't care too much for money...

Enviado por jmd el 1 de Febrero de 2010 - 19:36.

Le salió caro el tiro al JJ esa noche. Repartió los dólares que traía de la siguiente manera: le dio la mitad al comandante, la tercera parte al dueño del bar, la décima parte a su guardaespaldas, y los 2000 que le quedaban se los dio a la bailarina. ¿Cuántos dólares traía el JJ esa noche?

Problema

Famosas decadentes adictas al bisturí

Enviado por jmd el 21 de Enero de 2010 - 07:46.

En una muestra de 50 famosas, 35 han recurrido a la mamoplastia, 20 a la rinoplastia y 15 a la liposucción. Se logró averiguar también que 15 se habían practicado mamo y rinoplastia, 12 rinoplastia y liposucción, y 10 liposucción y mamoplastia. Se supo adicionalmente que 8 se habían sometido a las tres intervenciones estéticas.

Problema

Diagrama de Lewis Carroll: instancia de uso en conteo

Enviado por jmd el 20 de Enero de 2010 - 19:54.

Ingresaron 100 estudiantes a la facultad. De ellos, 40 son del sexo femenino, 73 eligieron la licenciatura en Comunicación Multimedia, y 12 del sexo femenino no eligieron Comunicación Multimedia. ¿Cuántos estudiantes de esos 100 son del sexo masculino y no eligieron Comunicación Multimedia?

Problema

Un acertijo de Lewis Carroll

Enviado por jmd el 17 de Enero de 2010 - 20:46.

Varios escuelantes se sientan formando un círculo de manera que cada uno tiene dos vecinos,  y quedan en un orden tal que el primero tiene un dollar más que el segundo y éste tiene un dollar más que el tercero, etc.

Problema

Un acertijo algebraico

Enviado por jmd el 8 de Enero de 2010 - 19:15.

La suma de tres números $a,b,c $ es 3, la suma de sus cuadrados es 11 y la suma de sus cubos es 27. Encontrar la suma de sus potencias cuartas.

Problema

Sin polinomios simétricos inútil es intentarlo

Enviado por jmd el 2 de Enero de 2010 - 12:34.

Demostrar que para $a,b,c$ reales no nulos tales que $a+b+c=0$ se cumple la identidad

$$\frac{a^3+b^3+c^3}{3}\cdot \frac{a^7+b^7+c^7}{7} = \Big( \frac{a^5+b^5+c^5}{5} \Big) ^2=$$

Problema

El fácil de la IMO 1961

Enviado por jmd el 2 de Enero de 2010 - 08:05.

Resolver el sistema de ecuaciones (donde $a,b$ son constantes):

x+y+z&=a\\ x^2+y^2+z^2&=b^2\\ xy&=z^2

Dar, además, las condiciones que deben satisfacer $a,b$ para que las soluciones del sistema $x,y,z$ sean números positivos distintos.

Problema

Polinomios simétricos: instancia de uso

Enviado por jmd el 1 de Enero de 2010 - 13:43.

Sean $a,b,c$ números reales distintos de cero y tales que $a+b+c=0$ y $a^3+b^3+c^3=a^5+b^5+c^5$. Demostrar que $a^2+b^2+c^2=\frac{6}{5}$

Problema

Identidad de Gauss

Enviado por jmd el 1 de Enero de 2010 - 12:44.

a) Demostrar la identidad algebraica $a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$

b) Demostrar la identidad $a^2+b^2+c^2-ab-bc-ca=\frac{1}{2}[(a-b)^2+(b-c)^2+(c-a)^2]$

c) Usar el resultados del inciso anterior para demostrar que si $a,b,c$ son reales positivos entonces se cumple la desigualdad  $a^2+b^2+c^2-ab-bc-ca\geq 0$