Problemas
También puedes compartirnos alguno de tus problemas favoritos:
Ejercicio 3.2
Sea $\pi$ un plano proyectivo. Usa la definición 3.11(la definición de espacio proyectivo pero simplificada) para probar que:
P3'. Existe almenos tres líneas no concurrentes en $\pi$.
P4'. Exiten almenos tres líneas que pasan por cualquier punto en $\pi$.
Deduce que el principio de dualidad es válido en un plano proyectivo.
Ejercicio 3.1.7
Demuestra que para cuales quiera $S_r$ y $S_n$ espacios proyectivos, el espacio $S_r \oplus S_n $ está formado por aquellos (y sólo aquellos) puntos que se encuentran sobre un línea que une un punto de $S_r$ y uno de $S_n$
Magia con matemáticas
Sea $ K $ un entero positivo de $ n $ cifras y $ S $ la suma de todas las cifras de $ K $. Demuestra que $ K $ menos $ S $ es múltiplo de 9 para todo $ n $, con $ n $ mayor o igual a 2.
Ejercicio 3.1.5
Sean $\ell$, $m$ y $n$ tres líneas mutuamente oblicuas (i.e, no dos de ellas se intersectan) en un espacio proyectivo $S_3$ de dimensión 3. Demuestre que por cada punto de $\ell$ pasa una única línea $r$ que intersecta a $m$ y $n$.
Esas líneas son llamadas $(\ell, m, n)$-transversales. El conjunto de $\mathcal{R}$ de todas las $(\ell, m, n)$-transversales es llamado un regulus, y algunas veces es denotado por $\mathcal{R}(\ell, m, n)$. Demuestre que no hay dos $(\ell, m , n)$-transversales distintas que se intersecten.
Ejercicio 3.1.2
Dos planos en un espacio proyectivo de dimensión 4, $S_4$, se dice que son oblicuos (skew en inglés) si se intersectan en un sólo punto. Sean $\pi$, $\alpha$ y $\beta$ tres planos mutuamente oblicuos en $S_4$. Demuestra que existe un único plano de $S_4$ que intesecta a cada uno de los planos $\pi$, $\alpha$ y $\beta$ en una recta.
Ejercicio 2.1.4
- a) Dualiza el teorema de Papus.
- b) Dibuja la configuración dual.
Ejercicio 2.1.2
Sea $ABCD$ un cuadrángulo en el plano Euclideano extendido (PEE). Sea $X = AB \cap CD$, $Y= BD \cap CA$, $Z = AD\cap BC$. El triángulo $XYZ$ es llamado triángulo diagonal.
Dibuja la configuración dual (el cuadrilátero y su trilátero diagonal).
El candidato llegó al ejido (cargado de despensas)
Más con menos (rendimientos decrecientes del trabajo en equipo)
En un equipo de trabajo de 20 desarrolladores de software educativo, la producción es de 30 unidades didácticas al año por cada integrante. Un estudio ha estimado que el rendimiento de cada miembro disminuiría en 1 unidad cada vez que se añadiera un nuevo miembro al equipo.
Don't care too much for money...
Le salió caro el tiro al JJ esa noche. Repartió los dólares que traía de la siguiente manera: le dio la mitad al comandante, la tercera parte al dueño del bar, la décima parte a su guardaespaldas, y los 2000 que le quedaban se los dio a la bailarina. ¿Cuántos dólares traía el JJ esa noche?
Famosas decadentes adictas al bisturí
En una muestra de 50 famosas, 35 han recurrido a la mamoplastia, 20 a la rinoplastia y 15 a la liposucción. Se logró averiguar también que 15 se habían practicado mamo y rinoplastia, 12 rinoplastia y liposucción, y 10 liposucción y mamoplastia. Se supo adicionalmente que 8 se habían sometido a las tres intervenciones estéticas.
Diagrama de Lewis Carroll: instancia de uso en conteo
Ingresaron 100 estudiantes a la facultad. De ellos, 40 son del sexo femenino, 73 eligieron la licenciatura en Comunicación Multimedia, y 12 del sexo femenino no eligieron Comunicación Multimedia. ¿Cuántos estudiantes de esos 100 son del sexo masculino y no eligieron Comunicación Multimedia?
Un acertijo de Lewis Carroll
Varios escuelantes se sientan formando un círculo de manera que cada uno tiene dos vecinos, y quedan en un orden tal que el primero tiene un dollar más que el segundo y éste tiene un dollar más que el tercero, etc.
Un acertijo algebraico
La suma de tres números $a,b,c $ es 3, la suma de sus cuadrados es 11 y la suma de sus cubos es 27. Encontrar la suma de sus potencias cuartas.
Sin polinomios simétricos inútil es intentarlo
Demostrar que para $a,b,c$ reales no nulos tales que $a+b+c=0$ se cumple la identidad
$$\frac{a^3+b^3+c^3}{3}\cdot \frac{a^7+b^7+c^7}{7} = \Big( \frac{a^5+b^5+c^5}{5} \Big) ^2=$$
El fácil de la IMO 1961
Resolver el sistema de ecuaciones (donde $a,b$ son constantes):
Dar, además, las condiciones que deben satisfacer $a,b$ para que las soluciones del sistema $x,y,z$ sean números positivos distintos.
Polinomios simétricos: instancia de uso
Sean $a,b,c$ números reales distintos de cero y tales que $a+b+c=0$ y $a^3+b^3+c^3=a^5+b^5+c^5$. Demostrar que $a^2+b^2+c^2=\frac{6}{5}$
Identidad de Gauss
a) Demostrar la identidad algebraica $a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$
b) Demostrar la identidad $a^2+b^2+c^2-ab-bc-ca=\frac{1}{2}[(a-b)^2+(b-c)^2+(c-a)^2]$
c) Usar el resultados del inciso anterior para demostrar que si $a,b,c$ son reales positivos entonces se cumple la desigualdad $a^2+b^2+c^2-ab-bc-ca\geq 0$