Problemas
También puedes compartirnos alguno de tus problemas favoritos:
Una forma complicada de definir una función elemental
Sea $N^* = \{1, 2, 3, \ldots \}$. Halle todas las funciones $f: N^* \mapsto N^*$ tales que:
- i) si $x < y$, entonces $f(x) < f(y)$
- ii) $f(y f(x)) = x^2f(xy)$, para todos los $x, y\in N^*$.
¿Cómo se encierra un n-polígono en un paralelogramo?
Muestre que, para cualquier polígono convexo de área uno, existe un paralelogramo de área 2 que lo contiene.
Primos que son diferencia de capicúas consecutivos
Un número natural es capicúa si al escribirlo en notación decimal se puede leer de igual forma de izquierda a derecha y de derecha a izquierda. Ejemplos: 8, 23432, 6446. Sean $x_1 < x_2 < \ldots < x_i < x_{i+1} < ... $ todos los números capicúas. Para cada $i$ sea $y_i=x_{i+1} - x_i$. ¿Cuántos números primos distintos tiene el conjunto $\{y_1, y_2, y_3 \ldots \}$?
¿Cómo era el generalizado de senos?
A partir del triángulo $T$ de vértices $A, B, C$, se construye el hexágono $H$ de vértices $A_1, A_2, B_1, B_2, C_1, C_2$ como se muestra en la figura. Demostrar que
Construcción de un trapecio inscrito
Se dan la circunferencia $\Gamma$ y los números positivos $h, m$ de modo que existe un trapecio $ABCD$, inscrito en $\Gamma$, de altura $h$ y tal que la suma de sus bases $AB$ y $CD$ es $m$. Construir el trapecio $ABCD$.
Dos sucesiones recursivas
Sean $(a_n)$ y $(b_n)$ dos sucesiones de números enteros que verifican las siguientes condiciones:
- i) $a_0 = 0, b_0 = 8$
- ii) $a_{n+2} = 2a_{n+1}-a_n+2, b_{n+2}=2b_{n+1}-b_n$
- iii) $a_n^2+b_n^2$ es un cuadrado perfecto para todo $n$.
Determinar al menos dos valores del par $(a_{1992}, b_{1992})$.
¿Sabes geometría analítica? (alternativa: Stewart)
En un triángulo equilátero $ABC$, cuyo lado tiene longitud 2, se inscribe la circunferencia $\Gamma$.
- a) Demostrar que para todo punto $P$ de $\Gamma$, la suma de los cuadrados de sus distancias a los vértices $A, B$ y $C$ es 5.
- b) Demostrar que para todo punto $P$ de $\Gamma$, es posible construir un triángulo cuyos lados tienen las longitudes de los segmentos $AP, BP$ y $CP$, y cuya área es $\sqrt{3}/4$
Suma de las raíces de un polinomio
Sean dados la colección de $n$ números reales positivos $a_1 < a_2 < a_3 < \ldots < a_n$, y la función$$f(x)=\frac{a_1}{x+a_1}+\frac{a_2}{x+a_2}+\ldots +\frac{a_n}{x+a_n}$$ Determinar la suma de las longitudes de los intervalos, disjuntos dos a dos, formados por todos los valores de $x$ tales que $f(x)\gt 1$.
Suma de una sucesión
Para cada entero positivo $n$, sea $a_n$ el último dígito del número $1+2+3+ ...+n$. Calcular $a_1 + a_2 + a_3 +\ldots+a_{1992}$.
Construir un triángulo (dados ortocentro y dos puntos medios)
Dados 3 puntos no alineados $M, N, P$, sabemos que $M$ y $N$ son puntos medios de dos lados de un triángulo y que $P$ es el punto de intersección de las alturas de dicho triángulo. Construir el triángulo.
¿Puedes maliciar que es suma de dos cuadrados?
Sea $P(X,Y) = 2X^2 - 6XY + 5Y^2$. Diremos que un número entero $A$ es un valor de $P$ si existen números enteros $B$ y $C$ tales que $A = P(B,C)$.
- i) Determinar cuántos elementos de $\{1, 2, 3, ... ,100\}$ son valores de $P$.
- ii) Probar que el producto de valores de $P$ es un valor de $P$.
Combinatoria con números de 3 cifras distintas elegidas de entre 5
Encontrar un número $N$ de cinco cifras diferentes y no nulas, que sea igual a la suma de todos los números de tres cifras distintas que se pueden formar con las cinco cifras de $N$.
Función creciente en [0,1]
Sea $F$ una función creciente definida para todo número real $x$, $0\leq x \leq 1, tal que:
- (a) $F(0) = 0$
- (b) $F(x/3) = F(x)/2$
- (c) $F(1-x) = 1 - F(x)$
Encontrar $F(18/1991)$
Dos perpendiculares seccionan un cuadrado
Dos rectas perpendiculares dividen un cuadrado en cuatro partes, tres de las cuales tienen cada una área igual a 1. Demostrar que el área del cuadrado es cuatro.
Sumas de 14 más menos unos
A cada vértice de un cubo se asigna el valor de +1 o -1, y a cada cara el producto de los valores asignados a cada vértice. ¿Qué valores puede tomar la suma de los 14 números así obtenidos?
Propiedad de un polinomio cúbico
Sea $f(x)$ un polinomio de grado 3 con coeficientes racionales. Probar que si el gráfico de $f$ es tangente al eje $x$, entonces $f(x)$ tiene sus 3 raíces racionales.
Recorridos en un tablero
Sean $A$ y $B$ vértices opuestos de un tablero cuadriculado de $n$ por $n$ casillas ($n\geq 1$), a cada una de las cuales se añade su diagonal de dirección $AB$, formándose así $2n^2$ triángulos iguales. Se mueve una ficha recorriendo un camino que va desde $A$ hasta $B$ formado por segmentos del tablero, y se coloca, cada vez que se recorre, una semilla en cada uno de los triángulos que admite ese segmento como lado.
¿Cómo se demuestra circunferencia ortogonal?
Sean $C_1$ una circunferencia, $AB$ uno de sus diámetros, $t$ su tangente en $B$, y $M$ un punto de $C_1$ distinto de $A$. Se construye una circunferencia $C_2$ tangente a $C_1$ en $M$ y a la recta $t$.
- a) Determinar el punto $P$ de tangencia de $t$ y $C_2$ y hallar el lugar geométrico de los centros de las circunferencias al variar $M$.
- b) Demostrar que existe una circunferencia ortogonal a todas las circunferencias $C_2$.
NOTA: Dos circunferencias son ortogonales si se cortan y las tangentes respectivas en los puntos de intersección son perpendiculares.
Divisibilidad de un polinomio
Sea $f(x) = (x + b)^2 - c$, un polinomio con $b$ y $c$ números enteros.
- a) Si $p$ es un número primo tal que $p$ divide a $c$ y $p^2$ no divide a $c$, demostrar que, cualquiera que sea el número entero $n$, $p^2$ no divide a $f(n)$.
- b) Sea $q$ un número primo, distinto de 2, que divide a $c$. Si $q$ divide a $f(n)$ para algún número entero $n$, demostrar que para cada entero positivo $r$ existe un número entero $n'$ tal que $q^r$ divide a $f(n')$.
Criterio de potencia para cíclico
En un triángulo $ABC$, sean $I$ el centro de la circunferencia inscrita y $D, E$ y $F$ sus puntos de tangencia con los lados $BC, AC$ y $AB$, respectivamente. Sea $P$ el otro punto de intersección de la recta $AD$ con la circunferencia inscrita. Si $M$ es el punto medio de $EF$, demostrar que los cuatro puntos $P, I, M$ y $D$ pertenecen a una misma circunferencia.