Problemas

Esta es nuestra colección de problemas. Los hemos clasificados por tema, dificultad y tipo de concurso. No dudes en escribir comentarios con tus soluciones o con cualquier duda sobre el problema.
También puedes compartirnos alguno de tus problemas favoritos:
Problema

Problema 6 (IMO 2011)

Enviado por jmd el 19 de Julio de 2011 - 10:21.

Sea $ABC$ un triángulo acutángulo con circuncírculo $\Gamma$. Sea $l$ una tangente a $\Gamma$, y sean $l_a,l_b,l_c$ las rectas obtenidas de $l$ mediante reflexión en $BC,CA,AB$, respectivamente. Demostrar que el circuncírculo del triángulo determinado por las rectas $l_a,l_b,l_c$ es tangente al círculo $\Gamma$.

Problema

Problema 5 (IMO 2011)

Enviado por jmd el 19 de Julio de 2011 - 10:18.

Sea $f$ una función de los enteros a los enteros positivos. Suponga que, para cualesquiera dos enteros $m,n$, la diferencia $f(m)-f(n)$ es divisible entre $f(m-n)$. Demostrar que, para todos los enteros $m$ y $n$ con $f(m)\leq f(n)$, el número $f(n)$ es divisible entre $f(m)$.

Problema

Problema 4 (IMO 2011)

Enviado por jmd el 19 de Julio de 2011 - 10:15.

 Sea $n>0$ un entero. Se tiene disponible una balanza y $n$ pesas de pesos $2^0,2^1,2^2,\ldots,2^{n-1}$. Debemos colocar cada una de las pesas en la balanza, una después de otra, de tal manera que el lado derecho nunca sea más pesado que el izquierdo. En cada paso elegimos una de las pesas que aún no ha sido colocada en la balanza, y la colocamos en alguno de los dos lados, hasta que todas las pesas han sido colocadas. Determinar el número de formas en que eso puede hacerse.

Problema

Caracterización del ortocentro

Enviado por jmd el 5 de Julio de 2011 - 19:16.

Demostrar que un punto $P$ en el interior de un triángulo acutángulo $XYZ$ es el ortocentro de éste si y sólo si 

  • $XP$ es perpendicular a $YZ$, y 
  • el reflejo de $P$ en el lado $YZ$ pertenece al circuncírculo de $XYZ$.
Problema

Suma de razones de segmentos

Enviado por jmd el 30 de Junio de 2011 - 19:41.

Sea $P$ un punto interior del triángulo $ABC$. Los rayos $AP,BP,CP$ cortan los lados $BC,CA,AB$ en los puntos $D,E,F$, respectivamente. Demostrar que 

$$\frac{PD}{AD}+\frac{PE}{BE}+\frac{PF}{CF}=1$$
Problema

Método de áreas (revisitado)

Enviado por jmd el 30 de Junio de 2011 - 19:34.

Sean dados dos segmentos $AB$ y $PQ$, y suponga que los segmentos o sus prolongaciones se cortan en el punto $M$. Demostrar que la razón de las áreas de los triángulos $ABP$ y $ABQ$ es igual a la razón de las distancias de $P$ a $M$ y de $Q$ a $M$.

Problema

Ejercicio clásico (con descubrimiento semiguiado)

Enviado por jmd el 30 de Junio de 2011 - 19:25.

 Sea $D$ un punto en la base $BC$ de un triángulo, y consideremos los triángulos $ABD$ y $ACD$. 

  •  Demostrar que la razón de sus áreas es igual a la razón de sus bases $BD$ y $CD$.
  •  Demostrar que si $D$ es el punto medio de $BC$ entonces sus áreas son iguales.
  •  Demostrar que si $D$ es el punto en que la bisectriz del ángulo $A$ corta a la base $BC$, entonces $AB/AC=BD/CD$ (teorema de la bisectriz).
 
Problema

Reflexión de pies de alturas (P6)

Enviado por jesus el 29 de Junio de 2011 - 18:03.

Sea $ABC$ un triángulo acutángulo y sean $D$, $E$ y $F$ los pies de las alturas desde $A$, $B$ y $C$, respectivamente. Sean $Y$ y $Z$ los pies de las perpendiculares desde $B$ y $C$ sobre $FD$ y $DE$, respectivamente. Sea $F_1$ la reflexión de $F$ con respecto a $E$ y $E_1$ reflexión de $E$ respecto a $F$. Si $3EF = FD+DE$ demuestra que $\angle BZF_1 = \angle CYE_1$.

Nota. La reflexión de un punto $P$ respecto a un punto $Q$ es el punto $P_1$ ubicado sobre la recta $PQ$ tal que $Q$ queda entre $P$ y $P_1$, y $PQ = QP_1$

Problema

Sistema de ecuaciones en tres variable (P5)

Enviado por jesus el 29 de Junio de 2011 - 17:49.

Los números reales positivos $x$, $y$, $z$ son tales que:

$$x+ \frac{y}{z} = y + \frac{z}{x} = z + \frac{x}{y} = 2$$

Determina todos los valores posibles de $x+y+z$.

Problema

Diofantina con tres primos (P4)

Enviado por jesus el 29 de Junio de 2011 - 17:45.

Encuentra todos los enteros positivos $p$, $q$ y $r$, con $p$ y $q$ números primos, que satisfacen la igualdad:

$$\frac{1}{p+1}+\frac{1}{q+1} - \frac{1}{(p+1)(q+1)} = \frac{1}{r}$$

Problema

Desliz tras desliz te lleva a 5 (P3)

Enviado por jesus el 29 de Junio de 2011 - 16:18.

Aplicar un desliz a un entero $n \geq 2$ significa tomar cualquier primo $p$ que divida a $n$ y remplazar $n$ por $\frac{n + p^2}{p}$.

Se comienza con un entero cualquiera mayor o igual que $5$ y se le aplica un desliz. Al número así obtenido se le aplica un desliz, y así sucesivamente se siguen aplicando deslices. Demuestra que sin importar los deslices aplicados, en algún momento se obtiene el número 5.

Problema

Triángulo escaleno (P2)

Enviado por jesus el 29 de Junio de 2011 - 15:56.

Sea $ABC$ un triángulo escaleno, $D$ el pie de la altura desde $A$, $E$ la intersección del lado $AC$ con la bisectriz del lado $\angle ABC$, y $F$ un punto sobre el lado $AB$. Sea $O$ el circuncentro del triángulo $ABC$ y sean $X$, $Y$ y $Z$ los puntos donde se cortan las rectas $AD$ con $BE$, $BE$ con $CF$, $CF$ con $AD$, respectivamente. Si $XYZ$ es un triángulo equilátero, demuestra que uno de los triángulos $OXY$, $OYZ$, $OZX$ es un triángulo equilátero.

Problema

Moscas en un cubo (P1)

Enviado por jesus el 29 de Junio de 2011 - 13:52.

En cada uno de los vértices de un cubo hay una mosca. Al sonar el silbato cada una de las moscas vuela a alguno de los vértices del cubo situado en una misma cara del vértice de donde partió, pero diagonalmente opuesto a éste. Al sonar el silbato ¿de cuántas maneras pueden volar las moscas de modo que en ningún vértice queden dos o más moscas?

Problema

Homotecia en un isósceles

Enviado por jmd el 19 de Junio de 2011 - 10:33.

 Considere un triángulo $ABC$ con $AB=AC$, y sea $D$ el punto medio de $BC$. La circunferencia de diámetro $AD$ corta el lado $AB$ en $B'$ y el lado $AC$ en $C'$. El circuncírculo de $ABC$, con centro en $O,$ es tangente al lado $AB$ en $P$ y al lado $AC$ en $Q$. Si llamamos $M$ al punto medio de $PQ$, demostrar:

  • $B'M$ es paralelo a $BO$
  • $M$ es equidistante de los lados del triángulo $AB'C'$
Problema

Dos cuerdas por el punto medio de una cuerda

Enviado por jmd el 13 de Junio de 2011 - 18:30.

Sea $AB$ una cuerda que no pasa por el centro del círculo y considere dos cuerdas $CD,EF$ que se cortan en el punto medio $P$ de $AB$. Demostrar que si las tangentes a la circunferencia en $C$ y $D$ se cortan en $Q$, y las tangentes en $E$ y $F$ se cortan en $R$, entonces $QR$ es paralela a $AB$.

Problema

Criterio para establecer cíclico con potencia de un punto

Enviado por jmd el 13 de Junio de 2011 - 18:28.

 Si las rectas $AB,CD$ se cortan en $P$ y $PA\cdot{PB}=PC\cdot{PD}$, entonces los puntos $A,B,C,D$ pertenecen a una misma circunferencia. Demostrarlo.

Problema

Bisectriz, dos triángulos, circuncírculos, potencia...

Enviado por jmd el 13 de Junio de 2011 - 18:26.

La bisectriz del ángulo $B$ del triángulo $ABC$ corta a $CA$ en $D$. El circuncírculo del triángulo $BCD$ corta el lado $AB$ en $E$, y el circuncírculo del triángulo $ABD$ corta al lado $BC$ en $F$. Demostrar que $AE=CF$.

Problema

Dos homotecias en un trapecio

Enviado por jmd el 13 de Junio de 2011 - 12:52.

Las prolongaciones de los lados $AB$ y $CD$ de un trapecio se intersecan en $K$, y sus diagonales en $L$. Si $M,N$ son los puntos medios de de las bases, demostrar que los puntos $K,L,M,N$ están en una misma recta.

Problema

Paralelogramo de baricentros

Enviado por jmd el 13 de Junio de 2011 - 12:51.

Las diagonales de un cuadrilátero convexo dividen a éste en cuatro triángulos. Demostrar que sus baricentros forman un paralelogramo.

Problema

Transformación geométrica de una circunferencia

Enviado por jmd el 26 de Mayo de 2011 - 18:40.

 Sean dadas dos circunferencias de radios diferentes y una afuera de la otra, y $H$ la intersección de sus tangentes exteriores comunes. Demostrar que para cualquier punto $A$ en una de las circunferencias, existe un punto $B$ en la otra de tal manera que $HA\cdot{HB}=HP\cdot{HQ}$, donde $P,Q$ son los puntos de tangencia de una de las tangentes comunes.