Problemas

Esta es nuestra colección de problemas. Los hemos clasificados por tema, dificultad y tipo de concurso. No dudes en escribir comentarios con tus soluciones o con cualquier duda sobre el problema.
También puedes compartirnos alguno de tus problemas favoritos:
Problema

Ejercicio trigonométrico

Enviado por jmd el 10 de Diciembre de 2011 - 10:40.

Sea $ABC$ un triángulo equilátero y $\Gamma$ su círculo inscrito. Si $D$ y $E$ son puntos de los lados $AB$ y $AC$, respectivamente, tales que $DE$ es tangente a $\Gamma$, demuestre que $$\frac{AD}{DB}+\frac{AE}{EC}=1$$

Problema

Una forma complicada de definir una función elemental

Enviado por jmd el 10 de Diciembre de 2011 - 10:37.

 Sea $N^* = \{1, 2, 3, \ldots \}$. Halle todas las funciones $f: N^* \mapsto N^*$ tales que:

  • i) si $x < y$, entonces $f(x) < f(y)$
  • ii) $f(y f(x)) = x^2f(xy)$, para todos los $x, y\in N^*$.
Problema

¿Cómo se encierra un n-polígono en un paralelogramo?

Enviado por jmd el 10 de Diciembre de 2011 - 10:30.

 Muestre que, para cualquier polígono convexo de área uno, existe un paralelogramo de área 2 que lo contiene.

Problema

Primos que son diferencia de capicúas consecutivos

Enviado por jmd el 10 de Diciembre de 2011 - 10:28.

Un número natural es capicúa si al escribirlo en notación decimal se puede leer de igual forma de izquierda a derecha y de derecha a izquierda. Ejemplos: 8, 23432, 6446. Sean $x_1 < x_2 < \ldots < x_i < x_{i+1} < ... $ todos los números capicúas. Para cada $i$ sea $y_i=x_{i+1} - x_i$. ¿Cuántos números primos distintos tiene el conjunto $\{y_1, y_2, y_3 \ldots \}$?

Problema

¿Cómo era el generalizado de senos?

Enviado por jmd el 10 de Diciembre de 2011 - 08:31.

A partir del triángulo $T$ de vértices $A, B, C$, se construye el hexágono $H$ de vértices $A_1, A_2, B_1, B_2, C_1, C_2$ como se muestra en la figura. Demostrar que

Problema

Construcción de un trapecio inscrito

Enviado por jmd el 10 de Diciembre de 2011 - 08:27.

Se dan la circunferencia $\Gamma$ y los números positivos $h, m$ de modo que existe un trapecio $ABCD$, inscrito en $\Gamma$, de altura $h$ y tal que la suma de sus bases $AB$ y $CD$ es $m$. Construir el trapecio $ABCD$.

Problema

Dos sucesiones recursivas

Enviado por jmd el 10 de Diciembre de 2011 - 08:24.

Sean $(a_n)$ y $(b_n)$ dos sucesiones de números enteros que verifican las siguientes condiciones:

  • i) $a_0 = 0, b_0 = 8$
  • ii) $a_{n+2} = 2a_{n+1}-a_n+2, b_{n+2}=2b_{n+1}-b_n$
  • iii) $a_n^2+b_n^2$ es un cuadrado perfecto para todo $n$.

Determinar al menos dos valores del par $(a_{1992}, b_{1992})$.

Problema

¿Sabes geometría analítica? (alternativa: Stewart)

Enviado por jmd el 10 de Diciembre de 2011 - 08:22.

 En un triángulo equilátero $ABC$, cuyo lado tiene longitud 2, se inscribe la circunferencia $\Gamma$.

  • a) Demostrar que para todo punto $P$ de $\Gamma$, la suma de los cuadrados de sus distancias a los vértices $A, B$ y $C$ es 5.
  • b) Demostrar que para todo punto $P$ de $\Gamma$, es posible construir un triángulo cuyos lados tienen las longitudes de los segmentos $AP, BP$ y $CP$, y cuya área es $\sqrt{3}/4$
Problema

Suma de las raíces de un polinomio

Enviado por jmd el 10 de Diciembre de 2011 - 08:18.

Sean dados la colección de $n$ números reales positivos $a_1 < a_2 < a_3 < \ldots < a_n$, y la función$$f(x)=\frac{a_1}{x+a_1}+\frac{a_2}{x+a_2}+\ldots +\frac{a_n}{x+a_n}$$ Determinar la suma de las longitudes de los intervalos, disjuntos dos a dos, formados por todos los valores de $x$ tales que $f(x)\gt 1$.

Problema

Suma de una sucesión

Enviado por jmd el 10 de Diciembre de 2011 - 08:16.

Para cada entero positivo $n$, sea $a_n$ el último dígito del número $1+2+3+ ...+n$. Calcular $a_1 + a_2 + a_3 +\ldots+a_{1992}$.

Problema

Construir un triángulo (dados ortocentro y dos puntos medios)

Enviado por jmd el 9 de Diciembre de 2011 - 22:38.

Dados 3 puntos no alineados $M, N, P$, sabemos que $M$ y $N$ son puntos medios de dos lados de un triángulo y que $P$ es el punto de intersección de las alturas de dicho triángulo. Construir el triángulo.

Problema

¿Puedes maliciar que es suma de dos cuadrados?

Enviado por jmd el 9 de Diciembre de 2011 - 22:36.

Sea $P(X,Y) = 2X^2 - 6XY + 5Y^2$. Diremos que un número entero $A$ es un valor de $P$ si existen números enteros $B$ y $C$ tales que $A = P(B,C)$.

  • i) Determinar cuántos elementos de $\{1, 2, 3, ... ,100\}$ son valores de $P$.
  • ii) Probar que el producto de valores de $P$ es un valor de $P$.
Problema

Combinatoria con números de 3 cifras distintas elegidas de entre 5

Enviado por jmd el 9 de Diciembre de 2011 - 22:34.

Encontrar un número $N$ de cinco cifras diferentes y no nulas, que sea igual a la suma de todos los números de tres cifras distintas que se pueden formar con las cinco cifras de $N$.

Problema

Función creciente en [0,1]

Enviado por jmd el 9 de Diciembre de 2011 - 22:33.

Sea $F$ una función creciente definida para todo número real $x$, $0\leq x \leq 1, tal que:

  • (a) $F(0) = 0$
  • (b) $F(x/3) = F(x)/2$
  • (c) $F(1-x) = 1 - F(x)$

Encontrar $F(18/1991)$

 

Problema

Dos perpendiculares seccionan un cuadrado

Enviado por jmd el 9 de Diciembre de 2011 - 22:30.

Dos rectas perpendiculares dividen un cuadrado en cuatro partes, tres de las cuales tienen cada una área igual a 1. Demostrar que el área del cuadrado es cuatro.

Problema

Sumas de 14 más menos unos

Enviado por jmd el 9 de Diciembre de 2011 - 22:29.

A cada vértice de un cubo se asigna el valor de +1 o -1, y a cada cara el producto de los valores asignados a cada vértice. ¿Qué valores puede tomar la suma de los 14 números así obtenidos?

Problema

Propiedad de un polinomio cúbico

Enviado por jmd el 9 de Diciembre de 2011 - 19:05.

Sea $f(x)$ un polinomio de grado 3 con coeficientes racionales. Probar que si el gráfico de $f$ es tangente al eje $x$, entonces $f(x)$ tiene sus 3 raíces racionales.

Problema

Recorridos en un tablero

Enviado por jmd el 9 de Diciembre de 2011 - 19:03.

Sean $A$ y $B$ vértices opuestos de un tablero cuadriculado de $n$ por $n$ casillas ($n\geq 1$), a cada una de las cuales se añade su diagonal de dirección $AB$, formándose así $2n^2$ triángulos iguales. Se mueve una ficha recorriendo un camino que va desde $A$ hasta $B$ formado por segmentos del tablero, y se coloca, cada vez que se recorre, una semilla en cada uno de los triángulos que admite ese segmento como lado.

Problema

¿Cómo se demuestra circunferencia ortogonal?

Enviado por jmd el 9 de Diciembre de 2011 - 19:01.

Sean $C_1$ una circunferencia, $AB$ uno de sus diámetros, $t$ su tangente en $B$, y $M$ un punto de $C_1$ distinto de $A$. Se construye una circunferencia $C_2$ tangente a $C_1$ en $M$ y a la recta $t$.

  • a) Determinar el punto $P$ de tangencia de $t$ y $C_2$ y hallar el lugar geométrico de los centros de las circunferencias al variar $M$.
  • b) Demostrar que existe una circunferencia ortogonal a todas las circunferencias $C_2$.

NOTA: Dos circunferencias son ortogonales si se cortan y las tangentes respectivas en los puntos de intersección son perpendiculares.

Problema

Divisibilidad de un polinomio

Enviado por jmd el 9 de Diciembre de 2011 - 18:59.

Sea $f(x) = (x + b)^2 - c$, un polinomio con $b$ y $c$ números enteros.

  • a) Si $p$ es un número primo tal que $p$ divide a $c$ y $p^2$ no divide a $c$, demostrar que, cualquiera que sea el número entero $n$, $p^2$ no divide a $f(n)$.
  • b) Sea $q$ un número primo, distinto de 2, que divide a $c$. Si $q$ divide a $f(n)$ para algún número entero $n$, demostrar que para cada entero positivo $r$ existe un número entero $n'$ tal que $q^r$ divide a $f(n')$.