Problemas

Esta es nuestra colección de problemas. Los hemos clasificados por tema, dificultad y tipo de concurso. No dudes en escribir comentarios con tus soluciones o con cualquier duda sobre el problema.
También puedes compartirnos alguno de tus problemas favoritos:
Problema

Construir un cuadrado con tres puntos dados

Enviado por jesus el 9 de Octubre de 2008 - 11:11.

Se tienen dados, un vértice V de un cuadrado y dos puntos A y B. Los puntos A y B se encuentran sobre dos lados (o prolongaciones de los lados) del cuadrado antes mencionado. Estos dos lados son precisamente los opuestos al vértice V, es decir, los que no lo contienen.

Usando regla y compás, construye el cuadrado.

Problema sugerido por Hugo Espinosa Pérez 10/Oct/2008 15:07

Problema

En sucesión modular busca el ciclo

Enviado por jmd el 5 de Octubre de 2008 - 07:34.

Considere la sucesión $1, 9, 8, 3, 4, 3, \ldots$ en la cual $a_{n+4}$ es el dígito de la unidades de $a_n + a_{n+3},$ para $ n $ entero positivo. Demuestre que $a_{1985}^2 +a_{1986}^2+ \ldots + a_{2000}^2$ es un múltiplo de $ 2 $.

Problema

¿Cuál es la invariante?

Enviado por jmd el 5 de Octubre de 2008 - 07:16.

En las siguientes cuadriculas, se dice que dos cuadrados son adyacentes, si comparten un lado. Considere la siguiente operación T: se eligen cualesquiera dos números en cuadrados adyacentes y a ambos se les suma el mismo entero. ¿Se puede transformar el tablero de la izquierda en el de la derecha mediante iteraciones de T?.

Problema

Un problema de igualdad de areas

Enviado por jmd el 5 de Octubre de 2008 - 07:11.

Sean $ABCD$ un paralelogramo, $ E $ un punto sobre la recta $AB$, mas allá de $ B $, $ F $ un punto sobre la recta $AD$, mas allá de $ D $, y $ K $ el punto de intersección de las rectas $ED$ y $BF$. Demuestre que los cuadriláteros $ABKD$ y $CEKF$ tienen la misma área.

Problema

suma de divisores

Enviado por jmd el 2 de Octubre de 2008 - 09:54.

Demuestre que hay una infinidad de enteros positivos $ n $ tales que la suma de los divisores positivos del número $2008^n-1$ es divisible entre $ n $.


 

Problema

Un sistema diofantino irracional

Enviado por jmd el 2 de Octubre de 2008 - 09:04.

 Determine todas las parejas $(x,y)$ de enteros positivos, tales que $x+y=a^n$ y $x^2+y^2=a^m$ para algunos enteros positivos $a, m, n.$


 

Problema

Máscaras de ángeles y de diablos

Enviado por jesus el 29 de Septiembre de 2008 - 20:50.

 

 

Este problema podría tener mal los datos. Hay que revisarlo

 

 

Se han colocado cuatro estudiantes en las esquinas de un cuarto. Se le ha colocado una máscara a cada uno. Cada estudiante es capáz de ver la máscara de los otros tres escépto la propia. Se les ha comento a los estudiantes que las mascaras que les pusieron provienen de un costal que sólo cuenta de 7 máscaras; 4 de ángeles y 3 de diablos.

Problema

Linea media bisectriz y cuerda

Enviado por jmd el 29 de Septiembre de 2008 - 07:55.

La cuerda del incírculo del triángulo ABC, definida por los puntos de tangencia P y Q en los lados b y c respectivamente, concurre con la línea media de los lados a y b y la bisectriz del ángulo B.

Problema

metodo chino del resto y ptf

Enviado por jmd el 14 de Septiembre de 2008 - 21:09.

Sea $f(n)=5n^{13}+13n^5+9an$. Encontrar el mínimo entero positivo$ a $ para el cual $f(n)$ es divisible entre $65$ para cada entero $ n $.

Problema

Menelao en monterrey 97

Enviado por jmd el 12 de Septiembre de 2008 - 22:40.

En un triángulo ABC, P y P' son dos puntos sobre el lado BC, Q sobre CA y R sobre AB, de tal manera que AR/RB = BP/PC = CQ/QA = CP'/P'B. Sea G el centroide del triángulo ABC y K el punto de intersección de AP' con RQ. Demostrar que P, G y K son colineales.

Problema

Método del residuo chino

Enviado por jmd el 11 de Septiembre de 2008 - 06:51.

Una compañía de n soldados es tal que:

– n es un número capicúa. (Se lee igual al derecho y al revés. Ejemplo:15651, 9436349.) – Si los soldados se forman de 3 en 3, quedan 2 soldados en la última fila; de 4 en 4, quedan 3 soldados en la última fila; de 5 en 5, quedan 5 soldados en la última fila.

Hallar el menor n que cumple las condiciones y demostrar que hay una infinidad de valores n que las satisfacen.

Problema

Dos segmentos iguales

Enviado por sadhi el 4 de Septiembre de 2008 - 19:18.

Se tiene un triángulo agudo; en el cual existen dos círculos con diámetros AB y BC. Sean los puntos E y F donde cortan dichos círculos al otro respectivo lado. Se construyen las rectas AE y CF y los puntos P y Q donde ellas cortan a los círculos

Demostrar que BQ = BP

Problema

particionar un conjunto

Enviado por jmd el 4 de Septiembre de 2008 - 10:23.

Sea S={1,2,…,2n}. ¿De cuántas formas se puede particionar S en subconjuntos de dos elementos? Ejemplo: una posibilidad es {1,2},{3,4},…,{2n-1,2n}.

Problema

Separación de amigos

Enviado por jesus el 30 de Julio de 2008 - 12:46.

Demostrar que cualquier conjunto de personas puede dividirse en dos grupos, de tal manera que cada una de las personas tiene al menos la mitad de sus amigos en el otro grupo.

Problema

sobre consecutivos y cuadrados perfectos

Enviado por jesus el 22 de Julio de 2008 - 14:41.

Demostrar que el producto de 4 enteros consecutivos, sumándole 1, siempre es un cuadrado perfecto.

Problema

Sobre primos y cuadrados perfectos

Enviado por jesus el 22 de Julio de 2008 - 14:22.

Encontrar todos los primos p < q < r tales que

  • 25pq + r = 2004 y
  • pqr + 1 es cuadrado perfecto.
Problema

Una progresion aritmetica de cuadrados

Enviado por jesus el 22 de Julio de 2008 - 13:33.

Demostrar que tres cuadrados perfectos en progresión aritmética tienen una diferencia constante que es múltiplo de 24.(En otras palabras, si $c^2 - b^2 = b^2 - a^2 = d$, entonces $ d $ es múltiplo de 24.)

Problema

Cuadrado perfecto y Factorial

Enviado por jesus el 22 de Julio de 2008 - 12:33.

Demostrar que $n! + 2004$ no es cuadrado perfecto para ningún entero positivo $ n $.

Problema

IMO 2008 (Problema 3)

Enviado por jesus el 21 de Julio de 2008 - 21:11.

Demuestra que existen infinitos enteros n tales que n2 + 1 tiene un divisor primo mayor que $2n+\sqrt{2n}$.

Problema

alturas de un paralelogramo y areas

Enviado por jmd el 14 de Julio de 2008 - 22:53.

Un paralelogramo ABCD tiene el angulo en D obtuso. Desde D se bajan perpendiculares a AB y BC, las cuales cortan a estos lados en M y N respectivamente. Si DB=DC=50 y DA=60 encontrar DM+DN.